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A CHARACTERIZATION OF REALCOMPACTNESS

LI PI SU

ABSTRACT.     Let 2  be a countably productive normal base in a

Tychonoff space.  We use proximity and construct a new Wallman-type

realcompactification  r¡   (2) which is always realcompact.   A Tychonoff

space is realcompact iff it has a countably productive normal base   2

such that each 2-ultrafilter with weakly countable intersection property

is fixed.

Introduction.  Let  2  be a countably productive normal base of a

Tychonoff space.  The Steiners in [14] gave, among other things, an example

showing that there is a countably productive normal base i in a Tychonoff

space such that the Wallman 2 -realcompactification  7/(2) is not realcom-

pact.  (See (3.11) in [14].)  Later, Gagrat and Naimpally in [7] gave incorrect

necessary and sufficient conditions for a countably productive normal base

so that  ?7(Z-) is realcompact: 77(2) is realcompact iff  O^i^l   q7-    =

Cl   n(fl°°   iZ ), for Z    £ 2, where X^  is the  O-closure of X  in cu(2).

(See Theorem 4.3 of [7].)  (For 7/(2) is realcompact may not imply that  7/(2)

is Xy.   (See Theorem 2 of [10] and the remark, and Theorems 51, 52 of

[9].))  In this note, we use proximity and construct a new Wallman-type space

i] i¿) from any countably productive normal base  2  such that  r¡ (2) is

always realcompact (see Theorem 1), and hence give a new characteriza-

tion for realcompactness.  (See Corollary 1.)

In order to fix our notations and for the sake of convenience, we begin

with recalling some known terminologies.

The spaces are always Tychonoff spaces.   A normal base  2 of a space

X is a base for the closed subsets of X  such chat (i)  2 is a ring (i.e.,

closed under finite unions and intersections), (ii)  2 is disjunctive (i.e., if

x  is not contained in the closed subset  A  of X, then there is a set Z e 2
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such that x £ Z C X - .4), (iii)  if A, B £ 2, A D B = 0 , then there exist

sets  C, D e 2  such that A C X - C, ß C X _ D, and  CuD = X.   (See [2] to

[7], [12], [14] and [15].)

A countably productive normal base (briefly denoted by  cp.  normal

base)  is a normal base which is closed under countable intersections.  We

say a family  £ of subsets of X has countable intersection property (briefly

denoted by  ci.p.) if every countable subfamily of 3 has nonempty intersec-

tion (see [A], [5]  and [7]).

Let 2 be a  cp. normal base of X.   Then the Wallman-type compactifica-

tion, zi>(2), is the set of all  2-ultrafilters topologized by using & = \Z: Z £

21  as a base for closed subsets, where  Z = ju £ cü(2): Z £ (A\, which may

be regarded as  Cl    „ Z.   Then <y(2)  is Hausdorff compact (see [2], [3], [6],

[7], [13], [14] and [15]).  Let 77(2) = ,0 £o)(2): ä has c.i.p.l with the rela-

tive topology induced by cú(¿); i.e., ^ = \Z; Z £ ¿\ is a base for closed

subsets of 77(2), where Z = ju e ?/(2): Z £ Q\.   77(2) is called a Wallman-

type (or 2*-) realcompactification of X.  (See [4], [5], [7], [14]  and [15].)

A subset A  of X  is  2-closed in  X  if for each p £ X - A  there is a Gg-set

containing p  and disjoint from A.   (See [10].)

We now proceed to relate these concepts to the proximity aspects of

the theory of compactification.  Let  (X, ¿5)  be a proximity space, where  8

is a proximity on  X.   (See [ll]  and  [13].) 8 denotes the negation of z3.  The

topology on  (X, 8) induced by  z5 is by considering the closure operation on

a subset A  of X, Cl A = ¡x e X: ,xS<5AS.   We write A SB  and read A  is

strongly contained in B, if Az5(X - B); and A  and B   ate separated by  C

and D  if A C C, B C D  and  C<5D.   A regular (or sometimes "round" is

used) filter is a filter A  with the property that for each A £ A  there is a

B £ A  such that  B C A (see [ll] and [13]).  The filter space determined by

all maximal regular filters is a compactification of X, which is called the

Smirov-compactification of X  associated with the given proximity.  Con-

versely, every compactification of X, yX, is obtained as the Smirnov-com-

pactification associated with a unique proximity  z5  defined as follows: A8B

iff ClvXA O ClvXB 4 0   (see [l], [ll], [12]  and [13]).  Thus the proximities

on X  and* the compactifications of X mutually determine one another.   A

family  J5 of subsets of X  is a base for the proximity 8 iff(Bl) for every

two disjoint sets  A, B  of ÍB, Az5B; and (B2)  every two subsets A, B C X

such that A8B   ate separated by sets of J>.  (See [ll]  and [12].)

Njlstad has shown in [12] that if 2 is a normal base of X  then the

Wallman-type compactification ü>(¿) is associated with a unique proximity
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5 which has  2  as a proximity base (see [ll, (8.6)]) and for A, B C zu(2)

ASB  iff Cl V~.A nCl V„,B4 0 (see [12, Lemma 1 to Theorem 2]).  More-

over, the proximity  5 restricted on X  has  2  as a base.  For a 2-filter A,

define A   = \Z £ 2: F CZ for some F £ A\. It is easy to see that A    is

the finest regular filter contained in A.

Definition.  A 2-filter A  is said to have weakly countable intersection

property, denoted by  w.ci.p., iff A  , the regular filter contained in A, has

c.i.p.  Of course, if A  has  c.i.p., then  A has  w.ci.p.   But the converse

need not be always true.  (See the example given below.)

From now on we will always assume that  2 is a cp. normal base of

X unless otherwise mentioned, and  r¡ (£) is the set of all i-ultrafilters

which have w.ci.p.   Before we state our main theorem, we need the follow-

ing facts.

Lemma 1.  For a normal base £ of X, a ¿-filter J  is a ¿-ultrafilter

iff for each  Z  in  2  either Z  is in A  or there is an  F £ A such that

F C X - Z.

Proof is straightforward, or see Lemma 3 in [2].

Hence, for Z e 2, (X - Z)  , a basic open set in <d(2) is  {(1 e <u(2):

Z 4 â| = [Q e <y(2): X -ZDF  for some  F £ Q\ = <u(2) - Z.

Lemma 2.  In a proximity space  (X, ¿J), for A, B C X  and A8B  there is

a proximity mapping g: X —» [0, l], the unit interval with the usual proxim-

ity, such that g[A] = 0 and g[B] = 1. (See Theorem 7.12, [ll].)

Theorem 1.  7/*(2) with  zzj(2) D ?7*(2) D rf(~)  is  Q-closed, and hence

77 (¿) is a realcompactification of X.

Proof.  It is clear that <u(2) 3 77*(2) Z> 77(2).  To show that  r¡ (2)  is

Q-closed, it is enough to show that if p £ &j(2) - r¡ (2), there is a zero-set

containing p  and disjoint from   r¡ (2). Note that  p = Uj £ a>(¿), and  Ctj

fails to have  c.i.p., i.e., there are A . £ (1., i = I, 2, • • • , such that

P|°°=1A. =0 .  (Let  8 be the proximity associated with <y(2).) Hence, for

each  i = 1, 2, • • •   there is a B . £ U.   with  B . S A ..   This is equivalent to
z 1 z z ^

B .5(X - A .).   Since  2  is a proximity, base, there are  Z    and  Z.   £¿  such

that Z. D B ., and Z.' D X - A . with Z JZ.'.  But Z .c5Z.'   iff Z . O Z.' = 0 .
_z_      _z' Z Z Z       I I       I 11^

Thus Z 8Z. . By Lemma 2, we have a proximity mapping (and hence con-

tinuous mapping) g.: <y(2)—»[0, l]  such that g (Z .) = 0  and g¿(Z¿ ) = 1.

Let Z = nr=lZ(&¿)> wnere  Zigj) = i* e <u(2): g¿(x) = Oh  We will show that

Z  is the desired zero-set.   Since  B . C Z., we have  B . C Z..   But  Ct,  £ B . C
i        i' i        i \ i
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Z. C Z(g.), so p £ (~)°°=yZ(g.) = Z.   Now suppose that  Z D tj*(2) ^ 0.   Then

there is an  Cl    e r/ (2)  and  Cl    e Z.   That is, Ct*  has  c.i.p.  Now for each

i = 1, 2, . . . , we have  X - Z.'  C A ..   Thus w(2) - Z'  C Â"..   Also  Z(g .) C

w(2) - Z¿' .  Hence, we have  Ct0 e ùj(2) - Z¿'  C A¿.   It follows that  fl    e A .,

and A. £&0. On the other hand, CfQ e Z C Z(g.) C w(2) - Z*  C A..   This

implies that  iaQ ] € oj(2) - Z!  C A ..   {ÖQ} CÂ. means  iCfQ SS(a>(2) - A\).

Since "isa base for the proximity of ¿5, there are F., F.   £ ¿ such that F. D {Ct  S

and F.' Dcu(2)-Ä. and ËW.. These imply that {fljCF. <£<u(2) - F.' C Ä..
z z z     z r/ Ozz z

That is, ja0!cF¡ CA..   Hence, we have  Ön  £ F . or F. £ QQ   and F. CÄ..

It follows that F   n X (S-A . r\X, and F . €:A ..   Therefore A. is indeed in
z z z z z

(l      This is true for all   i = 1, 2, • • • .  But, we then have  A . £ Ct ,  z = 1, 2,

• • •   and   (| "^,Á . = 0 .  This is a contradiction.  Hence  Z C\r¡ (¿) = 0 .

Example.  We will use an example in [14] to show that  77(2) may not be

equal to  77 (2).  For the sake of convenience, we recall it here.  Let  X  be

the disjoint union of the space  W  of all ordinals less than the first uncount-

able ordinal and the uncountable discrete space  D  of cardinality  c.   Let

\U.: i = 1, 2,.. • I be a countable collection of subsets of D  such that  U . 3

Ui + V each U. is uncountable, and   f\ ~=,í/¿ = 0 .  Define  C = \V C D: (V - U{)

U(U . -  V)   is countable for some  i - 1, 2, • • • \.  Let  2  be the family of

all zero-sets in X  of the form either (1)  Z (~\W  contains a tail in  W  and

ZnD is a cocountable subset of D, (2) ZnlC is compact and  Z O D  is

countable, or (3)  Z DW  is compact and Z C\D e C.   Then  2  is a  cp.  nor-

mal base.  (Notice it is easy to show that a separating intersecting ring in

[14] is equivalent to a  cp.  normal base.) Now, we consider a  2-ultrafilter

Cl  with   I  I Ct = 0 , and  Ct  contains all sets of form  (3) (but none of form

(2)) (see [14, (3.11)]).  We will show that Cf has w.ci.p.  Let  8 be the

proximity associated with w(2). Note that if A (cA   , then Az5(X - A  ).

There must be B, C £ 2  such that A C B, X - A* C C, and B~S~C.   Thus, if

A £ Ct, then B £ Cf.  Also B8C implies B n C = 0 , and so X - A* C C C

X - B.   If A     is of form  (3), then  C must be of form (1).  This forces that

B must be of form (2), which is impossible. Hence  Ct   = \A    £ ¿: A <£ A

for some A  e Ct}  contains only sets of form (1), and  Ct    / 0 (f°r X e Ct  ).

It is easy to show that   Cl    has  c.i.p.  Therefore  r¡(¿) 4 77 (2).  This shows

also that  w.ci.p.  may not be  c.i.p.

If 2 is a separating nest-generated intersecting ring (which is equiva-

lent to a strong delta normal base, see [5]), then  77(2) (= »(2)) = 77 (2).

Indeed, let  U e 77 (2) be arbitrary.  We will show that  Ct has  c.i.p.  Suppose

that A . £ Ct, i = 1, 2, • ■ ■, ate such that  (") ¿°_ ¡A ■ = 0 .  Since 2 is nest-
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generated, for each  k = 1, 2, • • •, Ak = C\°°=lFk, where  X ~ W« + l C F« + l C

X - Hk CFh  for some sequence  \Hk\ of sets in  2.  It follows that  Fk., n
_Tzrz ^ n TZ + 1

Hk   = 0 .  Thus  F*      CX -Hk CFk.   But F*      'DA.   e Ct, so  F* £ Ct*.
n ^ TZ + 1 n n n + x A; 72

This is true for each  n = 1, 2, • • • » and each  k = 1, 2, • • ■ .  Hence

OO /    DO V OO

n(n f*)= n At=0.
k-iV-i  7   fe=i  *

This contradicts the fact that  ct has  w.ci.p.

In light of Theorem 1, we see why the Wallman-type 2 -realcompactifi-

cations may fail to be realcompact. That is, in general, for any cp. normal

base 2 of X, the realcompactness is really characterized by a 2-ultrafHter

with  w.ci.p.  rather than a 2-ultrafilter with  c.i.p.

We now turn back to see a special case.  Consider the ring of all con-

tinuous real-valued functions on X, C(X).  For / £ C(X), the zero-set of /

is  Z(f) = \x £ X: f(x) = 0!.  20 = Z(X) = \Z(f): f £ C(X)\, the family of all

zero-sets on  X.   A maximal ideal M oí C(X) is real-if the quotient field

= \M(f): f £ C(X)\ is isomorphic to the real field  R; and a 2-ultrafilter

U is real if M = {/ e C(X): Z(f) £ Q\, a maximal ideal, is real.  (See Chapter

5 in [8].)

Theorem 2.  A   & -ultrafilter is real iff it has  w.ci.p.

Proof.  The necessity is clear,  because Theorem (5.14) in [8] says

that each real  2-ultrafilter has  c.i.p.

Sufficiency.  Suppose that  Ct is a  2-ultrafilter with  w.ci.p.  Since

2    is a strong delta normal base, as shown above  Ct has  c.i.p., and hence

it is real. (See (5.15) of [8].)

Combining Theorems 1 and 2, we have a new characterization of real-

compactness:

Corollary 1.  A space  X  is realcompact  iff X has a cp.  normal base

2 such that each  ¿-ultrafilter Ct with w.ci.p. is fixed, i.e.,   I I (l 4 0 •

Proof.  Necessity.  If X  is realcompact, then 2     the family of all

zero-sets of X, is a  cp.   normal base.   By (5.15) in [8], each real  2-ultra-

filter is fixed.  The result follows from Theorem 2.  Sufficiency is clear by

Theorem 1.

By aprime 2-filter A, we mean that J  is a 2-filter such that

whenever Zy Z    £ 2     and Z    UZ    e A, then we have either Z.  £ A or

Z? e A. Combining Theorems (2.11) and (2.12) of [8], we know that every
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prime  2-filter is contained in a unique  2-ultrafilter.  Here, we have an

analogous result for a prime  2-filter, where  2 is any countably productive

normal base of a space.

Theorem 3.  For a countably productive normal base  ¿, every prime

¿•filter (with w.c.i.b.)  is contained in a unique  ¿-ultrafilter (with w.ci.p.

respectively).

Proof.  Let  J   be a prime  2-filter (with  w.ci.p.).   By Zorn's Lemma,

A is contained in a 2-ultrafilter  Ct which is unique because  2 is a normal

collection and A  is prime.  (We need to show that  Ct has  w.ci.p.  Let  8 be

the proximity associated with a>(¿).  Suppose  Z. € Ct , z = 1, 2, • • • , such

that   f|°°   ,Z ■ = 0 .  Then there ¡sa Z.   e Ct such that  Z.   C Z.  for each
'    ■ Z   = 1      Z ^ I I I

i = 1, 2, ••• .  By the property of strong containment, there is  C.  a subset of

X suchthat Z.' C C. € Z..   That is, Z'.8(X - C.) and C .8(X - Z .).  Since 2
Z Z Z '       Z Z Z l'

is a base for 8, there are  D ., D!, E.  and E.    in  2  such that  D . D Z. , D.   D
Y        I 1 Z Z Z Z

X - C. and D SD' ; E . D C., E1 D X - Z. and E SE'.  Thus we have Z.' C
z z      z  '      z z       z z z      z z

D.¿X -D'  CC.CE.éx -E! CZ.,   Now, D.' u E .A (X - C .) u C. = X,
z zzz zz '     z z zz

D! u E. £ S C Ct.  But  Z.'   e Cf  and Z! n D! =0, so we must have E . £ 'S
II Z Z Z ^ ' I

(as J" is prime). This implies that E . C Z. £ S , which is true for each

z = 1, 2, • • • . But, we have (1°° ,Z. = 0. This contradicts the fact that

A has w.ci.p.)

Combining Theorem 3 and Corollary 1, we have:

Corollary 2.  A space is realcompact  iff X has a cp.  normal base 2

such that each prime  ¿-filter with w.ci.p. is fixed,   (Compare with (8.12)

in [8].)

We conclude with giving a condition on a realcompact zero-dimensional

space (i.e., has a base consisting of clopen subsets) so that it is  Jl-compact.

A complemental base  2  is a clopen base for a closed subset which is a

ring and X - F £ 2  for each  F £ 2.  It is easy to see that it is a normal

base (see [15]).

Theorem 4.  // 2  is a cp.  complemental base in a  T .   zero-dimensional

space  X, then  77(H) = 77*(2).

Proof.  Let  8 be the unique proximity associated with  a>(¿) with Z  as

a base.  In light of Theorem 1, we only need to show that  7/(2) D 77 (2).

But a cp.   complemental base  2 is clearly a strong delta normal  base.

Thus, as shown above, 77 (2) C r)(¿).
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Note that in [15], we proved that  77(2)  is always  Ji-compact.  Hence

we have:

Corollary 3.  A zero-dimensional realcompact  space is Jl-compact if it

is  r¡(¿) for some  cp.   complemental base  2.
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