A 2-PARAMETER CHEBYSHEV SET WHICH IS NOT A SUN

CHARLES B. DUNHAM

ABSTRACT. Consider approximation with respect to the Chebyshev norm $||g|| = \sup\{|g(x)| : 0 \le x \le 1\}$ on [0, 1]. A subset G of C[0, 1] such that each $f \in C[0, 1]$ has a unique best approximation from G is called a Chebyshev set. It has been shown by the author that there exist Chebyshev sets which are not suns [2], but the examples given were essentially one-dimensional. An example is now given which is two-dimensional.

Let G be the set of functions of the form

$$F(A, x) = (1 + a_1) \exp(-x/a_2), \quad a_1 > 0, \ 0 < a_2 \le a_1,$$

= 0 \qquad \qquad a_1 = 0 \qquad \qquad a_2 = 0.

We claim that G is a Chebyshev set in C[0, 1] which is not a sun.

First we show that best approximations exist to all $f \in C[0, 1]$. Let $||F(A^k, \cdot)|| < M$. Since $F(A, 0) = 1 + a_1$, $\{a_1^k\}$ is bounded, hence $\{a_2^k\}$ is bounded. Assume without loss of generality that $\{a_1^k\} \to a_1$, $\{a_2^k\} \to a_2$. If a_1 or $a_2 = 0$, $F(A^k, \cdot) \to 0$ pointwise on (0, 1]. If $a_1, a_2 > 0$, $\{F(A^k, \cdot)\}$ converges uniformly to $F(A, \cdot)$. Hence G is dense compact in the terminology of [1] and best approximations exist to all $f \in C[0, 1]$.

Assertion. $a_1 < b_1$ and $a_2 < b_2$ imply that $F(A, \cdot) < F(B, \cdot)$.

Next we show uniqueness of best approximations. Given any nonzero approximant $F(B,\cdot)$, there exists by the assertion an approximation $F(A,\cdot)$ strictly between $F(B,\cdot)$ and zero. It follows that 0 is uniquely best when it is best. Suppose we have two distinct best approximations $F(A,\cdot)$ and $F(B,\cdot)$ to f. Suppose $a_2=a_1$ and $b_2=b_1$. Let c_1 be between a_1 and b_1 and $c_2=c_1$. Then $F(C,\cdot)$ would be strictly between $F(A,\cdot)$ and $F(B,\cdot)$ by the assertion. $F(C,\cdot)$ would be a better approximation to f, giving a contradiction. Assume, therefore, that $a_2 < a_1$. Now there exist real numbers c_1 , c_2 such that $F(A,x)=c_1\exp(c_2x)$. Moreover, there is a neighbourhood f0 of f1 or f2 such that for f3 where f4 is in f5. From the theory of Meinardus and Schwedt f3, Theorem 91, f5 or f6, f9 alternates 2 times. But f6, f9 alternating 2 times means that f6, f9 is uniquely

Received by the editors April 19, 1974.

AMS (MOS) subject classifications (1970). Primary 41A50.

Copyright © 1975, American Mathematical Society

best in approximations of the form $c_1 \exp(c_2 x)$ and so is uniquely best in G. G is not a sun, as 0 is an isolated element.

Similar arguments show that the set of functions of the form

$$F(A, x) = (1 + a_1)/(1 + x/a_2),$$
 $a_1 > 0, 0 < a_2 \le a_1,$
= 0, $a_1 = 0 \text{ or } a_2 = 0,$

is a Chebyshev set which is not a sun. From these Chebyshev sets which are not suns, we can construct more complicated Chebyshev sets which are not suns. For the technique see [2, Theorem 2].

REFERENCES

- 1. C. B. Dunham, Existence and continuity of the Chebyshev operator, SIAM Rev. 10 (1968), 444-446. MR 38 #6288.
- 2. ——, Chebyshev sets in C[0, 1] which are not suns, Canad. Math. Bull. (to appear).
- 3. G. Meinardus, Approximation of functions: Theory and numerical methods, Springer, Berlin, 1964; English transl., Springer Tracts in Natural Philosophy, vol. 13, Springer-Verlag, New York, 1967. MR 31 #547; 36 #571.

COMPUTER SCIENCE DEPARTMENT, UNIVERSITY OF WESTERN ONTARIO, LONDON, CANADA