A CHARACTERIZATION OF PRIMITIVE BASES

H. H. WICKE AND J. M. WORRELL, JR.

ABSTRACT. The concept of primitive base is characterized in terms of primitive sequences. A characterization of essentially T_1 spaces having bases of countable order is a corollary.

1. Introduction. The concept of primitive base is fundamentally related to spaces having bases of countable order (see Theorem 2.6). It therefore underlies in a basic way such important topological structures as developable spaces and metrizable spaces. The main purpose of this article is to characterize primitive base in terms of primitive sequences, i.e., by a certain structure defined with the use of a sequence of well-ordered open coverings. This result shows that spaces having primitive bases are prototypes of both spaces having θ -bases (equivalently, quasi-developable spaces [2]) and of spaces having bases of countable order. The presence in such spaces of what we call a primitive sequence of basic type (see 4.2) permits the development of an extensive and harmonious theory [8]–[10], [12]–[14] wider in scope than the theories of quasi-developable spaces or of spaces having bases of countable order.

In $\S 2$ we make some detailed comparisons. In $\S 3$ we prove the main theorem. In $\S 4$ we obtain a new characterization of spaces having bases of countable order. In $\S 5$ we discuss completeness. We shall discuss elsewhere additional properties of spaces having primitive bases and a natural generalization to non-first-countable spaces arising from the main theorem.

Notation and terminology. Sequences such as $\langle H_n : n \in N \rangle$ will be denoted by H. Recall that a space X is essentially T_1 [12] if and only if for all x, $y \in X$, $x \in \{\overline{y}\}$ implies $y \in \{\overline{x}\}$ (see [3] also). The letter N denotes the set of positive integers. The notations < and \le are used ambiguously to denote orderings whose domains and ranges are contextually clear.

Received by the editors April 10, 1974.

AMS (MOS) subject classifications (1970). Primary 54E99; Secondary 54E30, 54A99.

Key words and phrases. Primitive base, primitive sequence, θ -base, base of countable order, quasi-developable space, developable space, completeness.

- 2. Primitive base. We define *primitive base* and show that it generalizes base of countable order and θ -base. Theorem 2.6, stated without proof, gives a precise connection with essentially T_1 spaces having bases of countable order (see also 4.3).
- 2.1. **Definition** [11]. A topological space X is said to have a *primitive* base if and only if there exists a sequence \mathcal{W} whose terms are well-ordered collections of open sets such that, for all $x \in X$, if U is open and $x \in U$, then there exist integers k and n such that x is in n elements of \mathcal{W}_k and the nth such element is a subset of U.
- 2.2. **Definition** [12]. A topological space is said to have a θ -base if and only if there exists a collection \mathcal{B} of open sets in X such that $\mathcal{B} = \bigcup_{n \in \mathbb{N}} \mathcal{B}_n$ and for each $x \in X$, if U is open and $x \in U$, then there exists $n \in \mathbb{N}$ such that $\{B \in \mathcal{B}_n : x \in B\}$ is finite and some member of this set is a subset of U.
- 2.3. Theorem [2]. A topological space X has a θ -base if and only if it is quasi-developable, i.e., there exists a sequence G of collections of open subsets of X such that for each $x \in X$ if U is open and $x \in U$ there exists $x \in S$ such that $x \in S$ s
- 2.4. Theorem. Every topological space which has a θ -base, or is quasi-developable, or is an essentially T_1 space having a base of countable order, has a primitive base.
- **Proof.** The first two statements are clear from the definitions and 2.3. The last statement follows from 3.6 and 4.1.
- 2.5. Example. Let X denote the Michael line [4] and ω_1 the space of countable ordinals with the order topology. Then the topological sum $X \oplus \omega_1$ and the topological product $X \times \omega_1$ are spaces which have primitive bases but which have neither a base of countable order nor a θ -base.
- **Proof.** The space X has a base consisting of the irrational singletons and the collection of all balls B(x, 1/n) where x is rational and $n \in \mathbb{N}$. Let $\{x_n: n \in \mathbb{N}\}$ be the range of a bijection between \mathbb{N} and the set of rational numbers. Let $\mathcal{B}_{00} = \{\{y\}: y \text{ is irrational}\}$ and $\mathcal{B}_{nm} = \{B(x_n, 1/m)\}$ for $n, m \in \mathbb{N}$. The collection $\mathcal{B}_{00} \cup \bigcup_{n,m \in \mathbb{N}} \mathcal{B}_{nm}$ is a θ -base for X. The space ω_1 has a base of countable order but is not developable [15 (in different terminology)]. That ω_1 does not have a θ -base follows from the result of [2] that a linearly ordered space is quasi-developable if and only if it is paracompact, since ω_1 is not paracompact. The property of having a θ -base is hereditary as is that of having a base of countable order [12]. Hence neither $X \oplus \omega_1$ nor $X \times \omega_1$ can have a θ -base or a base of countable order. That $X \oplus \omega_1$ has a primitive

base is clear from 2.4 and the definition of topological sum. That $X \times \omega_1$ has a primitive base follows from 2.4 and 3.9.

The following theorem, whose proof is made accessible by Theorem 3.6, will be proved elsewhere. For set of interior condensation see [5].

2.6. Theorem [11], [13]. A topological space is essentially T_1 and has a base of countable order if and only if it has a primitive base and closed sets are sets of interior condensation locally.

This result makes interesting contrast to the next two (known) theorems.

2.7. Theorem [12]. A topological space is developable if and only if it has a θ -base and closed sets are G_{δ} sets.

A theorem equivalent in content to 2.7, in view of Theorem 2.3, is the next one, discovered by Bennett independently of 2.3 and 2.7.

- 2.8. Theorem [1]. A topological space is developable if and only if it is quasi-developable and closed sets are $G_{\hat{\Sigma}}$ sets.
- 3. Primitive sequences and primitive bases. We first present some terminology of the theory of primitive sequences [6], and then characterize essentially T_1 spaces having primitive bases.
- 3.1. Definition. Let (\mathcal{Z}, \leq) be a well-ordered collection of sets. For each $W \in \mathcal{Z}$ let $p(W, \mathcal{Z})$ denote $\{x \in W : W' \in \mathcal{Z} \text{ and } W' \leq W \text{ implies } x \notin W'\}$. The set $p(W, \mathcal{Z})$ is called the *primitive part of* W (in \mathcal{Z}).
- In [6], primitive sequences are defined in a general way. Here, to simplify the exposition, we define only open primitive sequences.
- 3.2. Definition. Let X be a topological space. An open primitive sequence of X is a sequence \mathcal{H} of well-ordered open covers of X such that, for each $n \in \mathbb{N}$:
 - (a) For all $H \in \mathcal{H}_n$, $p(H, \mathcal{H}_n) \neq \emptyset$.
 - (b) If j < n and $p(H, \mathcal{H}_n) \cap p(H', \mathcal{H}_i) \neq \emptyset$, then $H \subseteq H'$.
- 3.3. Definition. Let \mathcal{H} be an open primitive sequence of a space X. A primitive representative of \mathcal{H} is a sequence H such that for all $n \in \mathbb{N}$, $p(H_n, \mathcal{H}_n) \cap p(H_{n+1}, \mathcal{H}_{n+1}) \neq \emptyset$.
- 3.4. Notation. If \mathcal{H} is a primitive sequence, $PR(\mathcal{H})$ denotes $\{H: H \text{ is a primitive representative of } \mathcal{H}\}$.
- 3.5. **Definition.** If \mathcal{H} is a primitive sequence, then for all $H \in PR(\mathcal{H})$, pc(H) denotes $\bigcap_{n \in N} p(H_n, \mathcal{H}_n)$. This set is called the *primitive core* of H.
 - 3.6. Main theorem. A topological space is essentially T_1 and has a

primitive base if and only if it has an open primitive sequence \mathcal{H} such that for all $H \in PR(\mathcal{H})$, if $pc(H) \neq \emptyset$, then $\{H_n: n \in N\}$ is a base at each element of $\bigcap_{n \in N} H_n$.

Proof. Necessity. Let \emptyset be a sequence of well-ordered collections related to a space X as in 2.1. Assume X is essentially T_1 . Call $(k, n) \in$ $N \times N$ admissible for $x \in X$ if x is in n elements of \emptyset_k . Let A(k, n) = $\{x \in X: (k, n) \text{ is admissible for } x\}$. For $x \in A(k, n)$ let W(x, i) denote the ith element of \mathcal{O}_k that contains x, let $\mathcal{O}(x, n) = \{W(x, i): i \le n\}$, and let V(x) $= \bigcap \{W(x, i): i \leq n\}. \text{ Let } \mathcal{O}(k, n) = \{V(x): x \in A(k, n)\}. \text{ Then for } x, y \in A(k, n),$ V(x) = V(y) if and only if $\mathfrak{V}(x, n) = \mathfrak{V}(y, n)$. Let < be defined on $\mathfrak{V}(k, n)$ by V(x) < V(y) if and only if $V(x) \neq V(y)$ and if $m = \min\{i : W(x, i) \neq W(y, i)\}$, then W(x, m) precedes W(y, m) in \mathcal{O}_k . It is readily verified that \leq well orders $\mathcal{O}(k, n)$. Furthermore $x \in p(V(x), \mathcal{O}(k, n))$ for all $x \in A(k, n)$. If $\mathcal{O}(k, n)$ covers X let $\mathcal{O}'(k, n) = \mathcal{O}(k, n)$. If not, let $\mathcal{O}'(k, n) = \mathcal{O}(k, n) \cup \{X\}$ with an ordering which extends that of $\mathcal{O}(k, n)$ and makes X follow all other elements. If A(k, n)= \emptyset , let $\mho'(k, n) = \{X\}$. Let $U_{(k+n-1)(k+n-2)/2+k}$ denote $\mho'(k, n)$ for all $(k, n) \in N \times N$. Let $H_1 = U_1$. Suppose H_1, \dots, H_n have been defined and satisfy the conditions of 3.2 for $1 \le i \le n$. Call a set W of (n+1)-form if there exist $U \in \mathcal{U}_{n+1}$ and $H \in \mathcal{H}_n$ such that $p(U, \mathcal{U}_{n+1}) \cap p(H, \mathcal{H}_n) \neq \emptyset$ and $W = U \cap H$. If W is of (n + 1)-form, then its representation is unique; i.e., if $U, U' \in \mathcal{U}_{n+1}$ and $H, H' \in \mathcal{H}_n$, and

$$p(U, \mathcal{U}_{n+1}) \cap p(H, \mathcal{H}_n) \neq \emptyset \neq p(U', \mathcal{U}_{n+1}) \cap p(H', \mathcal{H}_n),$$

and $U \cap H = U' \cap H'$, then U = U' and H = H'. In what follows, if W is written in (n+1)-form $U \cap H$, then $U \in \mathcal{U}_{n+1}$ and $H \in \mathcal{H}_n$. Let $\mathcal{H}_{n+1} = \{W: W \text{ is of } (n+1)\text{-form}\}$ ordered by W < W' if and only if $W \neq W'$ and if $U \cap H$ and $U' \cap H'$ are the respective representations of W and W', then either (a) U precedes U' in \mathcal{U}_{n+1} , or (b) U = U' and H precedes H' in \mathcal{H}_n . It may be verified that \leq is a well ordering of \mathcal{H}_{n+1} . Furthermore, if $W \in \mathcal{H}_{n+1}$ and $W = U \cap H$, then

$$p(W, \mathcal{H}_{n+1}) = p(U, \mathcal{U}_{n+1}) \cap p(H, \mathcal{H}_n).$$

For if $x \in p(W, \mathcal{H}_{n+1})$, then $x \in U \cap H$. If $x \in p(U', \mathcal{U}_{n+1}) \cap p(H', \mathcal{H}_n)$, then $W' = U' \cap H' \in \mathcal{H}_{n+1}$. Since $U' \leq U$ and $H' \leq H$ it follows that $W' \leq W$. Thus W = W'. These considerations establish the equality. Clearly \mathcal{H}_{n+1} is an open cover of X since \mathcal{H}_n is, and $p(H, \mathcal{H}_{n+1}) \neq \emptyset$ for all $H \in \mathcal{H}_{n+1}$. Suppose $x \in p(W, \mathcal{H}_{n+1}) \cap p(W', \mathcal{H}_n)$ and $W = U \cap H$. Then $x \in p(U, \mathcal{U}_{n+1}) \cap p(H, \mathcal{H}_n)$.

Hence H = W'. Thus $W \subseteq W'$. Condition (b) of 3.3 follows from this. Thus an open primitive sequence \mathcal{H} of X may be defined by induction.

Suppose $H \in PR(\mathcal{H})$ and $x \in pc(H)$. Let D be open and $x \in D$. Then there exist k and n such that x is in n elements of W_k and the nth such element is a subset of D. Therefore $V(x) \in \mathcal{C}(k, n)$ and $V(x) \subseteq D$. Since $x \in p(V(x), \mathcal{O}(k, n))$ it follows for j = (k + n - 2)(k + n - 1)/2 + k that $x \in p(V(x), \mathcal{H}_j)$. If j = 1, $V(x) = H_1 \in \mathcal{H}_1$ and $V(x) \subseteq D$. If j > 1, then there exists $H' \in \mathcal{H}_{j-1}$ such that $x \in V(x) \cap H' \in \mathcal{H}_j$, and $V(x) \cap H' \subseteq D$. But $x \in p(H_j, \mathcal{H}_j)$ implies $H_j = V(x) \cap H'$. Thus $\{H_n : n \in N\}$ is a base at each point of pc(H).

Suppose $z \in \{\overline{y}\} \cap pc(H)$. Then $y \in \{\overline{z}\}$ by essential T_1 -ness. If $y \in p(W, \mathcal{H}_n)$, then $z \in W$, so that $H_n \leq W$. Since $y \in H_n$, $W = H_n$. Thus $\{\overline{y}\} \cap pc(H) \neq \emptyset$ implies $\{\overline{y}\} \subseteq pc(H)$. Suppose $z \notin pc(H)$. Then $pc(H) \subseteq X \setminus \{\overline{z}\}$. Thus $z \notin H_j$ for some $j \in N$. Hence $pc(H) = \bigcap_{n \in N} H_n$ and the proof is complete.

Sufficiency. Suppose such a sequence \mathbb{H} exists in a space X. Then for all $x \in X$, there is $H \in PR(\mathbb{H})$ such that $x \in pc(H)$. If D is open and $x \in D$, then there is a k such that $H_k \subseteq D$. Thus (k, 1) is an admissible pair for x. Therefore X has a primitive base. Suppose x, $y \in X$ and $y \in \{\overline{x}\}$ and $x \in pc(H)$. If $y \in pc(W)$, then $x \in \bigcap \{W_n : n \in N\}$. Thus for each n there is j > n such that $W_j \subseteq H_n \cap W_n$. Hence $y \in \bigcap \{H_n : n \in N \text{ so that } x \in \{\overline{y}\}$. Thus X is essentially T_1 .

- 3.7. Remark. Note that the axiom of choice is not used to prove 3.6.
- 3.8. Example. The Sierpiński space $S = \{\emptyset, 1\}$ with topology $\{\emptyset, \{\emptyset\}, S\}$ has a primitive base but is not essentially T_1 . It has exactly two primitive sequences: one has each term equal to $\{S\}$; the other is defined by $\mathcal{H}_n = \{\{\emptyset\}, S\}$ where $\{\emptyset\} < S$. The only primitive representatives of \mathcal{H} are either those whose terms are eventually $\{\emptyset\}$ or the primitive representative H all of whose terms are S. Note that $pc(H) = \{1\}$, but H is not a base at each point of $\bigcap_{n \in N} H_n = S$.

From 3.6 and the calculus of primitive sequences we obtain the next two theorems. Proofs will be submitted elsewhere.

- 3.9. Theorem. The concept of primitive base is hereditary and countably productive.
- 3.10. **Theorem.** If an essentially T_1 topological space X is the union of open sets each having a primitive base in the relative topology, then X has a primitive base.

- 4. Spaces having bases of countable order. Theorem 4.1, whose proof may be obtained from those of Theorems 1 and 2 of [12], compares instructively with 3.6 and proves part of 2.4. Theorem 4.3 puts in sharp focus the distinction between 3.6 and 4.1.
- 4.1. Theorem [12]. A topological space is essentially T_1 and has a base of countable order if and only if it has a primitive sequence \mathcal{H} such that, for all $H \in PR(\mathcal{H})$, if $\bigcap_{n \in N} H_n \neq \emptyset$, then $\{H_n : n \in N\}$ is a base at each point of $\bigcap_{n \in N} H_n$.
- 4.2. **Definition.** Suppose X is a topological space and \mathcal{H} is an open primitive sequence of X satisfying the conditions of (3.6). Then \mathcal{H} will be called a *primitive sequence* (of X) of basic type.
- 4.3. Theorem. A topological space is essentially T_1 and has a base of countable order if and only if it has a primitive sequence \mathcal{H} of basic type such that for all $H \in PR(\mathcal{H})$, if $\bigcap_{n \in \mathbb{N}} H_n \neq \emptyset$, then $pc(H) \neq \emptyset$.
- **Proof.** Necessity. Suppose X is essentially T_1 and has a base of countable order. Let $\mathcal H$ be a sequence relative to X as in 4.1, and let $H \in PR(\mathcal H)$ and $x \in \bigcap_{n \in N} H_n$. There exists $W \in PR(\mathcal H)$ such that $x \in pc(W)$. Thus each $W_n \leq H_n$. Since $\{H_n \colon n \in N\}$ is a base at x, there exists j > n such that $H_j \subseteq H_n \cap W_n$. Since $p(H_j, \mathcal H_j) \subseteq p(H_n, \mathcal H_n)$, it follows that $H_n \leq W_n$. Thus $pc(H) = \bigcap_{n \in N} H_n$.
- 4.4. Remark. This makes precise a sense in which essentially T_1 spaces having bases of countable order are *complete spaces* in the class of spaces having primitive bases.
- 5. Completeness. A natural question arises concerning completeness. We discuss it for the regular T_0 case although an analogous discussion can be given for pararegular [7] spaces. Recall that a regular T_0 space having a base of countable order is called an $Aronszajn\ space\ [6]$ and a monotonically complete member of this class is called a $complete\ Aronszajn\ space$. Does there exist for the class of regular T_0 spaces having a primitive sequence of basic type a "natural" class of complete spaces? Theorem 5.3 shows that a natural method of defining a complete space in this case (one analogous to that used for Aronszajn spaces) yields the complete Aronszajn spaces rather than a new class. Theorems 5.1 and 5.2 imply 5.3.
- 5.1. Theorem. Suppose X is a topological space having a primitive sequence \mathcal{H} of basic type. Then the following are equivalent:

- (a) $H \in PR(\mathcal{H})$ implies $\bigcap_{n \in \mathbb{N}} H_n \neq \emptyset$ and $\{H_n : n \in \mathbb{N}\}$ is a base at each point of $\bigcap_{n \in \mathbb{N}} H_n$.
 - (b) $H \in PR(\mathcal{H})$ implies $pc(H) \neq \emptyset$.

Proof. Clearly (b) implies (a). The proof of 4.3 shows that (a) implies (b).

5.2. **Theorem.** A topological space is a complete Aronszajn space if and only if it is regular T_0 and has an open primitive sequence \mathbb{H} such that for all $H \in PR(\mathbb{H})$, $\bigcap_{n \in \mathbb{N}} H_n \neq \emptyset$ and $\{H_n : n \in \mathbb{N}\}$ is a base at each point of $\bigcap_{n \in \mathbb{N}} H_n$.

Proof. A proof for this may be obtained from the proofs of Theorems 3.2, 3.3, and Lemma 2.4 of [6].

5.3. Theorem. A topological space is a complete Aronszajn space if and only if it is a regular T_0 space having a primitive sequence \mathcal{H} of basic type such that for all $H \in PR(\mathcal{H})$, $pc(H) \neq \emptyset$.

Added in proof. (1) A proof of Theorem 2.6 is to appear in a paper by the authors in the Canadian Journal of Mathematics in 1975. (2) The proof of Theorem 3.6 shows that essentially T_1 may be omitted in its statement if $\bigcap_{n \in \mathbb{N}} H_n$ is replaced by pc(H). (Dr. T. M. Phillips proved a similar theorem in his 1974 University of Oklahoma dissertation.)

REFERENCES

- 1. H. R. Bennett, On quasi-developable spaces, General Topology and Appl. 1 (1971), 253-262. MR 44 #5921.
- 2. H. R. Bennett and D. J. Lutzer, A note on weak θ -refinability, General Topology and Appl. 2 (1972), 49-54. MR 46 #853.
- 3. A. S. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly 68 (1961), 886-893. MR 35 #4869.
- 4. E. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), 375-376. MR 27 #2956.
- 5. H. H. Wicke, Base of countable order theory and some generalizations, Proc. Univ. Houston Point Set Topology Conf. 1971, Houston, Tex., 1972.
- 6. H. H. Wicke and J. M. Worrell, Jr., Topological completeness of first countable Hausdorff spaces. I, Fund. Math. 75 (1972), 209-222. MR 46 #8189.
- 7. ______, Pararegularity, Notices Amer. Math. Soc. 20 (1973), A-173. Abstract #701-54-15.
- 8. ——, Characterization of absolute sets of interior condensation, Notices Amer. Math. Soc. 20 (1973), A-401. Abstract #704-G6.
- 9. _____, The preservation of primitive base by certain open mappings, Notices Amer. Math. Soc. 20 (1973), A-533. Abstract #706-54-5.
- 10. ——, Uniformly primitively complete mappings, Notices Amer. Math. Soc. 20 (1973), A-675. Abstract #709-G23.
- 11. J. M. Worrell, Jr. and H. H. Wicke, Concerning spaces having bases of countable order, Notices Amer. Math. Soc. 12 (1965), 343. Abstract #622-60.

- 12. J. M. Worrell, Jr. and H. H. Wicke, Characterizations of developable topological spaces, Canad. J. Math. 17 (1965), 820-830. MR 32 #427.
- 13. ——, A central metrization theorem. I, Notices Amer. Math. Soc. 20 (1973), A-355. Abstract #702-G2.
- 14. J. M. Worrell, Jr. and H. H. Wicke, A central metrization theorem. II, Notices Amer. Math. Soc. 20 (1973), A-381. Abstract #703-G14.
- 15. L. Zippin, On a problem of N. Aronszajn and an axiom of R. L. Moore, Bull. Amer. Math. Soc. 37 (1931), 276-280.

DEPARTMENT OF MATHEMATICS, OHIO UNIVERSITY, ATHENS, OHIO 45701