GROUPS WITH FAITHFUL BLOCKS

H. PAHLINGS

ABSTRACT. A necessary and sufficient condition is given for a finite group to have a p-block with kernel {1}. This extends a theorem of Gaschütz on the existence of a faithful irreducible representation of a finite group.

Let G be a finite group and F a field of characteristic $p \ge 0$. Then the group algebra FG is a direct sum of two-sided ideals B_i which are indecomposable as two-sided ideals $FG = B_1 \oplus \cdots \oplus B_n$. The B_i are called the block ideals of FG. If e is a block idempotent, i.e. the identity element of a block ideal B, then a (left) FG-module V is said to belong to the block $B \leftrightarrow e$ if eV = V.

Furthermore, if p > 0 and R is a complete discrete valuation ring with residue class field F and quotient field K of characteristic 0, then every block idempotent e can be lifted to a block idempotent \check{e} of RG, which can be embedded in KG. A KG-module V is also said to belong to the block $B \leftrightarrow e$ if $\check{e}V = V$.

For the case that F and K are splitting fields for G, R. Brauer [1] has defined the kernel of the block $B \leftrightarrow e$ to be the intersection of the kernels of the (ordinary) irreducible K-representations of G belonging to $B \leftrightarrow e$. Returning to the case where F is an arbitrary field we feel that it is natural to make the following

Definition. The kernel N(e) of a block $B \leftrightarrow e$ is the kernel of the F-representation of G, which is afforded by the block ideal B. Thus $N(e) = \{g \in G | ge = e\}$.

We remark that this agrees with Brauer's definition as Proposition 1(b) below shows, but differs slightly from the one used in [3] and [4], where the intersection $N^*(e)$ of the kernels of the irreducible F-representations of G belonging to $B \leftrightarrow e$ was called the kernel of $B \leftrightarrow e$. The kernel N(e) is uniquely determined by $N^*(e)$ and vice versa. In fact, by a result of

Received by the editors April 2, 1974.

AMS (MOS) subject classifications (1970). Primary 20C20, 20C05.

Key words and phrases. Group algebra, block, kernel of a block, faithful representations.

Michler [3]

$$N(e) = O_{p}(N^{*}(e)), \qquad N^{*}(e)/N(e) = O_{p}(G/N(e)),$$

i.e. N(e) is the maximal p-regular normal subgroup of $N^*(e)$ and $N^*(e)/N(e)$ is the maximal normal p-subgroup of G/N(e). Here a normal subgroup is called p-regular, if its order is not divisible by p.

Proposition 1. (a) The kernel N(e) of the block $B \leftrightarrow e$ is equal to the kernel of every principal indecomposable module belonging to $B \leftrightarrow e$.

(b) If p > 0 and R is a complete discrete valuation ring with residue class field F and quotient field K of characteristic 0, then N(e) is the intersection of the kernels of the irreducible K-representations belonging to $B \leftrightarrow e$.

Proof. (a) Obviously N(e) is the intersection of the kernels of the principal indecomposable F-representations belonging to $B \leftrightarrow e$. Let H be the kernel of a principal indecomposable module FGu belonging to $B \leftrightarrow e$, where u denotes a primitive idempotent of FG. H must be p-regular, since if $u = \sum_{g \in G} \alpha_g g$, then α_g is constant on the cosets of H, because for $b \in H$, bu = u. Thus $u = \sum_{i=1}^r \alpha_i g_i (\sum_{b \in H} b)$, where g_1, \ldots, g_r are coset representatives of H in G, and

$$u = u^2 = |H| \sum_{i,j} \alpha_i \alpha_j g_i g_j \left(\sum_{h \in H} h \right),$$

which would be 0 if p divides |H|.

Hence one can form $s_H = |H|^{-1} \sum_{h \in H} h$ and one has $s_H u = u$. But s_H is a central idempotent and $s_H = \sum_{N(e_i) \geq H} e_i$. Since $s_H u = u$, the block idempotent e must occur in the sum, therefore $N(e) \geq H$.

(b) $KG\check{e}$ is the direct sum of those simple ideals, which have irreducible modules belonging to $B \leftrightarrow e$. Hence the intersection of the kernels of the irreducible K-representations belonging to $B \leftrightarrow e$ is $\{g \in G | g\check{e} = \check{e}\}$. Since \check{e} is mapped onto e under the natural map $RG \to FG$, one has obviously $\{g \in G | g\check{e} = \check{e}\} \leq N(e)$. Conversely, let $x \in N(e)$, hence xe = e. We denote the unique maximal ideal of R by πR . If $x\check{e} \neq \check{e}$, there is a maximal number $k \geq 1$ such that $x\check{e} - \check{e} \in \pi^k RG$. Let $\check{e} = \sum_{g \in G} \alpha_g g$ ($\alpha_g \in R$); then $\alpha_g \equiv \alpha_{xg} \equiv \cdots \equiv \alpha_{x^{m-1}g} \mod(\pi^k)$, where m is the order of x. Hence, if g_1, \ldots, g_r are coset representatives of $\langle x \rangle$ in G,

$$e = \sum_{i=1}^{r} (\alpha_i (1 + x + \cdots + x^{m-1}) + b_i) g_i$$

with $b_i \in \pi^k RG$ and $\alpha_i = \alpha_{g_i}$. But then

$$x\check{e} - \check{e} = (x\check{e} - \check{e})\check{e} = \sum_{i=1}^{r} (x\check{e} - \check{e})b_{i}g_{i} \in \pi^{2k}RG,$$

a contradiction.

The natural question-Which p-regular normal subgroups H can be kernels of blocks?—can be reduced to the case $H=\{1\}$. FG has a block with kernel H if and only if H is p-regular and F(G/H) has a block with kernel $\{1\}$. This follows from the fact that if H is p-regular and $s_H=|H|^{-1}\Sigma_{h\in H}b$, then $FG=FGs_H\oplus FG(1-s_H)$, where $FGs_H\cong F(G/H)$ is the direct sum of all block ideals of FG with kernels containing H.

Proposition 2. FG has a block with kernel $\{1\}$ if and only if the maximal p-regular normal subgroup O_p , (Soc(G)) of the socle of G is generated by one class of conjugate elements of G.

For the case p=0 or p a prime not dividing the order of G this proposition contains the theorem of Gaschütz [2] (see also Žmud' [5]) on the existence of a faithful irreducible representation; for in this case the kernel of a block is simply the kernel of an irreducible representation, and $O_{p}(\operatorname{Soc}(G)) = \operatorname{Soc}(G)$.

Proof of Proposition 2. It was shown in [4] that if FG has a block with kernel {1} then the same is true also for F'G, where F' is any field with the same characteristic as F. Hence one can assume that F is a splitting field for G.

Let Φ_i $(1 \le i \le r)$ be the characters of the principal indecomposable representations of FG and $\phi_i(1)$ be the degrees of the corresponding irreducible representations of FG. If H is a p-regular normal subgroup of G, it follows from the orthogonality relations for G/H that

$$\sum_{N(\Phi_{\cdot})\geq H} \phi_i(1)\Phi_i(x) = \begin{cases} |G/H| & \text{if } x \in H, \\ 0 & \text{if } x \not\in H, \end{cases}$$

where the sum ranges over all i such that the kernel $N(\Phi_i)$ contains H.

If M_1, \ldots, M_m are the minimal normal p-regular subgroups of G, then

$$\psi(x) = \sum_{N(\Phi_i)=\{1\}} \phi_i(1)\Phi_i(x)$$

$$= \sum_{i=1}^{r} \phi_{i}(1) \Phi_{i}(x) + \sum_{k=1}^{m} (-1)^{k} \sum_{1 \leq j_{1} < \cdots < j_{k} \leq m} \sum_{N(\Phi_{i}) \geq M_{j_{1}} \cdots M_{j_{k}}} \phi_{i}(1) \Phi_{i}(x),$$

where an empty sum is understood to be 0. Hence

$$\psi(1) = |G| + \sum_{k=1}^{m} (-1)^{k} \sum_{1 \leq j_{1} < \dots < j_{k} \leq m} |G: M_{j_{1}} \cdots M_{j_{k}}|.$$

The lattice of normal subgroups of G, which are contained in $Q = O_{p'}(\operatorname{Soc}(G))$ has a duality ϵ such that $(MN)^{\epsilon} = M^{\epsilon} \cap N^{\epsilon}$, $(M \cap N)^{\epsilon} = M^{\epsilon}N^{\epsilon}$ and $|N^{\epsilon}| = |Q:N|$. If N_1, \ldots, N_m are the normal subgroups of G which are maximal in Q, then

$$\psi(1) = |G| + \sum_{k=1}^{m} (-1)^{k} \sum_{1 \leq j_{1} < \cdots < j_{k} \leq m} |G: N_{j_{1}}^{\epsilon} \cdots N_{j_{k}}^{\epsilon}|.$$

Since $|Q:N_{j_1}^{\epsilon} \cdots N_{j_k}^{\epsilon}| = |N_{j_1} \cap \cdots \cap N_{j_k}|$, it follows that

$$\psi(1) = |G:Q| \left| Q \bigvee_{j=1}^{m} N_{j} \right|,$$

and this is different from zero if and only if Q is generated by one class of conjugate elements of G. Q.E.D.

REFERENCES

- 1. R. Brauer, Some applications of the theory of blocks of characters of finite groups. I, J. Algebra 1 (1964), 152-167. MR 29 #5920.
- 2. W. Gaschütz, Endliche Gruppen mit treuen absolut-irreduziblen Darstellungen, Math. Nachr. 12 (1954), 253-255. MR 16, 671.
- 3. G. O. Michler, The kernel of a block of a group algebra, Proc. Amer. Math. Soc. 37 (1973), 47-49. MR 46 #9151.
- 4. H. Pahlings, Über die Kerne von Blöcken einer Gruppenalgebra, Arch. Math. 25 (1974), 121-124.
- 5. È. M. Žmud', On the kernels of homomorphisms of linear representations of a finite group, Mat. Sb. 44(86) (1958), 353-408. (Russian) MR 20 #5236.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GIESSEN, 63 GIESSEN, FEDERAL REPUBLIC OF GERMANY