ABSOLUTELY CLOSED MAPS

LOUIS FRIEDLER

ABSTRACT. An example is given of a continuous function $f\colon X\to Y$ which is closed, has point inverses H-closed, but which can be extended to a continuous function $F\colon Z\to Y$ for some Z which has X as a proper dense subset. A partial characterization of nonextendable functions is given in terms similar to Bourbaki's theorem that perfect maps $f\colon X\to Y$ are those for which $f\times i_Z\colon X\times Z\to Y\times Z$ is a closed map for all spaces Z.

A map $f: X \to Y$ is called absolutely closed if there does not exist an extension of f to $F: X^* \to Y$ where X^* is any space with X as a proper dense subset. These maps seem interesting in terms of extensions of functions and in their relation to H-closed spaces. Absolutely closed maps were first introduced by Blaszczyk and Mioduszewski [1] and characterizations have been given by Viglino [6] and Dickman [3].

All spaces are assumed Hausdorff and all maps continuous. A countable ultrafilter is one with a countable base. A subset A of X is called (countably) far from the remainder (c.f.f.r. or f.f.r. respectively) iff for each free open (countable) ultrafilter $\mathcal U$ on X, there is some $U \in \mathcal U$ for which $\overline U \cap A = \emptyset$. A closed set is regular closed iff it is the closure of its interior. A map is regular closed iff the image of every regular closed set is closed.

Theorem 1 (Dickman [3]). A map $f: X \to Y$ is absolutely closed iff (1) $f^{-1}(y)$ is f.f.r. for all $y \in Y$ and

(2) f is regular closed.

Viglino [6] has asked whether every closed map with point inverses *H*-closed is absolutely closed. In view of Theorem 1, Dickman [3] pointed out that this question may be rephrased: if point inverses of a closed map are *H*-closed, are they also f.f.r.? The following example gives a negative answer to this question. The space used is essentially the one described in [1, p. 48].

Example. Let $X = ([-1, 1] \times N^+) \cup \{p\}$, where N^+ is the set of positive integers and p is an additional point whose neighborhoods are of the form

Received by the editors May 9, 1974.

AMS (MOS) subject classifications (1970). Primary 54C10, 54D25.

Key words and phrases. H-closed, absolutely closed map, regular closed map.

 $V_n=\{(x,\,i)|x>0,\,i\geq n\}\cup\{p\}.$ Consider the subset A of X consisting of $([0,\,1]\times N^+)\cup\{p\}.$ X is clearly Hausdorff and A is H-closed but A is not f.f.r. Construct an ultrafilter $\mathbb O$ on X as follows: let $\mathbb U=\mathbb U_1\cup\mathbb U_2$ where the sets in $\mathbb U_1$ are $U_n=\{(x,\,i)|x<0,\,i\geq n\}$ and the sets in $\mathbb U_2$ are of the form $U_{t_1t_2\ldots}=\{(x,\,n)|t_n< x<0,\,-1\leq t_n<0\}.$ Then $\mathbb U$ is contained in some free ultrafilter $\mathbb O$. We claim that $\overline V\cap A\neq\emptyset$ for all $V\in\mathbb O$. If there were some $V_0\in\mathbb O$ for which $\overline V_0\cap A=\emptyset,\,\overline V_0\cap\{(0,\,n)|n\in N^+\}=\emptyset$. It follows that for each n there exist t_n and s_n with $-1\leq t_n<0,\,0< s_n\leq 1$ and V_0 disjoint from the interval $(t_n,\,s_n)$. But then $V_0\cap U_{t_1t_2\ldots}=\emptyset$, which is impossible. Thus $\overline V\cap A\neq\emptyset$ for all $V\in\mathbb O$ and A is not f.f.r.

Identify A to a point y_0 and let f be the natural map and Y the quotient space. Then Y is Hausdorff, f is closed, $f^{-1}(y)$ is H-closed for all $y \in Y$ but $f^{-1}(y_0) = A$ is not f.f.r. so that f is not absolutely closed.

Remarks. It is well known [2] that a map $f\colon X\to Y$ is perfect iff $f\times i_Z\colon X\times Z\to Y\times Z$ is a closed map for all spaces Z, where i_Z is the identity map on Z. In the special case that Y is a point we obtain as a corollary Scarborough's result [4] that a space X is compact iff the projection $\pi_Z\colon X\times Z\to Z$ is closed for all spaces Z. Our interest here is to examine to what extent similar results hold for absolutely closed functions. That is, what theorem gives as a corollary Scarborough's result [4] that a space X is H-closed iff the projection $\pi_Z\colon X\times Z\to Z$ is regular closed for all spaces Z? We conjecture that $f\colon X\to Y$ is absolutely closed iff $f\times i_Z\colon X\times Z\to Y\times Z$ is regular closed for all spaces Z. The necessity is proved in Theorem 3 but for the sufficiency we only have the partial result of Theorem 2. Notice that Theorem 2 implies that for the function of the Example, there is a space Z with $f\times i_Z\colon X\times Z\to Y\times Z$ not regular closed.

Definition. A map $f: X \to Y$ is countably absolutely closed if there does not exist an extension of f to $F: X^* \to Y$ where X^* is any space with X as a proper dense subset such that all points of $X^* - X$ have a countable neighborhood base.

The proofs of the following lemmas follow the techniques of Theorem 1 above and Theorem 1.2 of [6] and are omitted. Lemma 1 also holds for arbitrary countable filter-bases.

Lemma 1. $f: X \to Y$ is countably absolutely closed iff no free countable ultrafilter U on X has f(U) convergent.

Lemma 2. If $f: X \to Y$ and

(1) f is regular closed and

(2) $f^{-1}(y)$ is c.f.f.r. for all $y \in Y$, then f is countably absolutely closed. If f is countably absolutely closed and Y is first countable then (1) and (2) hold.

Theorem 2. Let $f: X \to Y$. If $f \times i_Z: X \times Z \to Y \times Z$ is regular closed for all spaces Z, then f is countably absolutely closed.

Proof. Since $f \times i_Z$ is regular closed for all spaces Z, f is regular closed. Hence if f is not countably absolutely closed then by Lemma 2 there is some $y_0 \in Y$ for which $f^{-1}(y_0)$ is not c.f.f.r. So, let $\mathcal U$ be a free maximal countable open filter with $f^{-1}(y_0) \cap \overline{U} \neq \emptyset$ for all $U \in \mathcal U$. If $\{U_i\}$ is a base for $\mathcal U$ we may assume that $U_{n+1} \subseteq U_n$ for all n. Let p be an additional point with basic neighborhoods $U_i \cup \{p\}$. Then if $Z = X \cup \{p\}$, Z - X is first countable and Z is Hausdorff, so consider $f \times i_Z \colon X \times Z \to Y \times Z$. Since $\{p\} = \bigcap \operatorname{Cl}_Z U_n$ we may assume $U_{n-1} - \operatorname{Cl}_Z U_n \neq \emptyset$ for all n. Let

$$V_1 = U_1 \times (Z - \operatorname{Cl}_Z U_1), \quad V_2 = U_2 \times (U_1 - \operatorname{Cl}_Z U_2), \dots,$$

$$V_n = U_n \times (U_{n-1} - \operatorname{Cl}_Z U_n)$$

and let $W = \overline{\bigcup_{i=1}^{\infty} V_i}$. Since $f \times i_Z$ is regular closed, $(f \times i_Z)(W)$ is closed. We claim that if $z \neq p$, $(y_0, z) \in (f \times i_Z)(W)$. Since $z \neq p$, there is a first k for which $z \notin \overline{U}_k$, hence $z \in \overline{U_{k-1}} - \overline{U}_k \subseteq \overline{U_{k-1}} - \overline{U}_k$. Now, $f^{-1}(y_0) \cap \overline{U}_j \neq \emptyset$ for all j, and f is regular closed so that $y_0 \in f(\overline{U}_j) = \overline{f(U_j)}$ for all j. Therefore,

$$(y_0, z) \in \overline{f(U_k)} \times \overline{U_{k-1} - \overline{U}_k} = \overline{f(U_k) \times (U_{k-1} - \overline{U}_k)}$$

$$= \overline{(f \times i_Z)(V_k)} \subseteq \overline{(f \times i_Z)(\bigcup V_i)} = (f \times i_Z)(W),$$

since $f \times i_Z$ is regular closed. Thus, $\{y_0\} \times X \subseteq (f \times i_Z)(W)$ so that $\{y_0\} \times Z \subseteq (f \times i_Z)(W)$. It follows that there is some $x_0 \in f^{-1}(y_0)$ with $(x_0, p) \in W$.

Let K be the first integer with $x_0 \notin \overline{U_K}$ and consider the neighborhood $(X - \overline{U}_K) \times U_{K+1}$ of (x_0, p) . If $((X - \overline{U}_K) \times U_{K+1}) \cap (U_{N+1} \times (U_N - \overline{U}_{N+1}))$ $\neq \emptyset$, then if $N \leq K$ then $U_K \subseteq U_N$ so that $U_{K+1} \cap (U_N - \overline{U_{N+1}}) = \emptyset$, while if K < N, $U_N \subseteq U_K$ so $U_{N+1} \cap (X - \overline{U}_K) = \emptyset$. In either case the contradiction implies that $((X - \overline{U}_k) \times U_{k+1}) \cap \bigcup V_i = \emptyset$ and hence $(x_0, p) \notin \overline{\bigcup V_i} = \emptyset$. This contradiction establishes the theorem.

In the proof of Theorem 2, if X is first countable so is Z. Also, since a first countable subset which is c.f.f.r. is easily first-countable-and-Haus-

dorff-closed (closed in every first countable Hausdorff space in which it is embedded [5]) we have from Theorem 2,

Corollary 2.1. If $f \times i_Z \colon X \times Z \to Y \times Z$ is regular closed for all first countable spaces and X is first countable, then $f^{-1}(y)$ is first-countable and-Hausdorff-closed for all $y \in Y$ and f is countably absolutely closed.

Lemma 3 (Stephenson [5, Theorem 5.7]). For each first countable Hausdorff space X, the space Z of all countable open ultrafilters on X is first-countable-and-Hausdorff-closed and contains X as a dense subset.

Notice that in this extension we can take the neighborhoods of a point $p \in Z$ to be $\{p\} \cup U_i$, where U_i is a member of the base for p. Then, in the proof of Theorem 2 we could have taken Z to be this first countable Hausdorff extension of X, with $p \in Z - X$.

Corollary 2.2. If X is first countable and $f \times i_Z$: $X \times Z \to Y \times Z$ is regular closed for all first-countable-and-Hausdorff-closed spaces Z, then f is countably absolutely closed.

The next lemma is proved by using Viglino's ultrafilter characterization of absolutely closed maps [6, Theorem 1.2] (or Lemma 1 for the countable case) and imitating the proof of Lemma 2 of [2, p. 101]. Theorem 3 and its corollary then follow from the lemma and Theorem 1, and the lemma and Lemma 2 respectively.

Lemma 4. If f_{α} : $X_{\alpha} \to Y_{\alpha}$ are (countably) absolutely closed for all α then so is $f: \Pi X_{\alpha} \to \Pi Y_{\alpha}$, $(f(x))_{\alpha} = f_{\alpha}(x_{\alpha})$.

Theorem 3. If $f: X \to Y$ is absolutely closed then $f \times i_Z \colon X \times Z \to Y \times Z$ is regular closed for all spaces Z.

Corollary 3.1. If $f: X \to Y$ is countably absolutely closed and Y is first countable, $f \times i_Z \colon X \times Z \to Y \times Z$ is regular closed for all first countable spaces Z.

Corollary 3.2. If X is first countable the following are equivalent:

- (1) π_Z : $X \times Z \to Z$ is regular closed for all first countable spaces Z;
- (2) π_Z : $X \times Z \to Z$ is regular closed for all first-countable-Hausdorff-closed spaces Z;
 - (3) X is first-countable-and-Hausdorff-closed.

Proof. (1) \Rightarrow (2) is obvious, (2) \Rightarrow (3) follows from Corollary 2.2 by

taking Y to be a point, and (3) \Rightarrow (1), follows from Corollary 3.1 again by letting Y be a single point.

Added in proof. The following is proved by using Theorem 1 and applying the methods of the proof of Theorem 7 of [4].

Theorem. If $f \times i_Z \colon X \times Z \to Y \times Z$ is regular closed for all spaces Z, then f is absolutely closed.

Question. If $f \times i_Z \colon X \times Z \to Y \times Z$ is regular closed for all *H*-closed spaces Z, is f necessarily absolutely closed?

BIBLIOGRAPHY

- 1. A. Blaszczyk and J. Mioduszewski, On factorization of maps through TX, Colloq. Math. 23 (1971), 45-52. MR 46 #4461.
- 2. N. Bourbaki, Eléments de mathématique. I: Les structures fondamentales de l'analyse. Livre III: Topologie générale, Actualités Sci. Indust., nos. 1029, 1045, 1084, 1142, 1143, Hermann, Paris, 1947, 1948, 1949; English transl., Hermann, Paris; Addison-Wesley, Reading, Mass., 1966. MR 34 #5044b.
- 3. R. F. Dickman, Jr., Regular closed maps, Proc. Amer. Math. Soc. 39 (1973), 414-416. MR 47 #4203.
- 4. C. T. Scarborough, Closed graphs and closed projections, Proc. Amer. Math. Soc. 20 (1969), 465-470. MR 40 #3514.
- 5. R. Stephenson, Minimal first countable topologies, Trans. Amer. Math. Soc. 138 (1969), 115-127. MR 38 #6537.
- 6. G. Viglino, Extensions of functions and spaces, Trans. Amer. Math. Soc. 179 (1973), 61-69.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEXAS, AUSTIN, TEXAS 78712

Current address: Department of Mathematics, University of Missouri, Columbia, Missouri 65201