PRODUCTS OF STEINER'S QUASI-PROXIMITY SPACES

E. HAYASHI

ABSTRACT. E. F. Steiner introduced a quasi-proximity δ satisfying $A \delta B$ iff $\{x\} \delta B$ for some x of A. The purpose of this paper is to describe the Tychonoff product of topologies in terms of Steiner's quasiproximities. Whenever (X_a, δ_a) is the Steiner quasi-proximity space, the product proximity on $X = \Pi X_a$ can be given, by using the concept of finite coverings, as the smallest proximity on X which makes each projection δ -continuous.

Introduction. E. F. Steiner [2] introduced a quasi-proximity δ satisfying $A \delta B$ iff $\{a\} \delta B$ for some a of A. This note is devoted to the study of a product proximity on $X = \Pi X_a$, where each (X_a, δ_a) is the above Steiner quasi-proximity space. As F. W. Stevenson [3] pointed out, there are three equivalent definitions of a product proximity. Especially, Császár and Leader defined a product proximity by using finite coverings [3]. Unfortunately, for Steiner's quasi-proximity, it seems difficult to us to define the product proximity in the same way as Császár and Leader. We must modify the definition of a product proximity in our case (Definition 2). We then show that the Tychonoff product topology can be induced on the cartesian product $X = \Pi X_a$ in terms of the quasi-proximity mentioned above.

The reader is referred to S. A. Naimpally and B. D. Warrack [1] for definitions not given here.

Preliminary definitions and lemmas.

Definition 1. A binary relation δ defined on the power set of X is called a *Steiner's* or *S-quasi-proximity* on X iff δ satisfies the axioms below.

(I) For every $A \in X$, $A \overline{\delta} \phi$ ($\overline{\delta}$ means "not- δ ").

(II) $A \delta B$ iff $\{a\} \delta B$ for some $a \in A$.

(III) $A \delta (B \cup C)$ iff $A \delta B$ or $A \delta C$.

(IV) For every $x \in X$, $\{x\} \delta \{x\}$.

(V) $A \overline{\delta} B$ implies that there exists a subset C such that $A \overline{\delta} C$ and $(X - C) \overline{\delta} B$.

AMS (MOS) subject classifications (1970). Primary 54E05.

Key words and phrases. Quasi-proximity, product proximity, δ-continuous maps.

Copyright © 1975, American Mathematical Society

Received by the editors May 25, 1974.

E. HAYASHI

Remark 1. Clearly Axiom (II) is equivalent to Axiom (II') below. (II') For an arbitrary index set Λ ,

$$\left(\bigcup_{\lambda \in \mathbf{A}} A_{\lambda}\right) \delta B \quad \text{iff } A_{\mu} \delta B \text{ for some } \mu \in \mathbf{\Lambda}.$$

Furthermore, in the S-quasi-proximity we can replace Axiom (V) with Axiom (V') below.

(V') If $x \ll A$, then there exists a set B such that $x \ll B \ll A$. (In general, $P \ll Q$ means $P \overline{\delta} (X - Q)$ and Q is said to be a δ -neighborhood of P.)

In fact, it is easily seen that Axiom (V) implies Axiom (V'). Conversely we show that Axiom (V) follows from Axioms (I)-(IV) and (V'). Suppose $A \overline{\delta} B$. By Axiom (II), $\{x\} \overline{\delta} B$, i.e. $x \ll X - B$ for each $x \in A$. Then it follows from Axiom (V') that there is a set C_x such that $x \ll C_x \ll X - B$ for each $x \in A$. Since $\{x\} \overline{\delta} (X - C_x)$ for each $x \in A$,

$$\{x\} \overline{\delta} \left(X - \bigcup_{x \in A} C_x \right)$$
 by Axiom (III).

Setting $\bigcup_{x \in A} C_x = C$, we obtain $A \overline{\delta} (X - C)$ by Axiom (II). On the other hand, since $C_x \overline{\delta} B$ for each $x \in A$, we have $C \overline{\delta} B$ by Axiom (II'). Thus Axiom (V) surely holds.

Let (X, δ) be an S-quasi-proximity space. For every $A \subset X$, we set $c(A) = \{x: \{x\} \delta A\}$. Then the operator c is a topological closure operator and so X is a topological space [2]. This topological space is denoted by (X, c) and the topology induced by δ is denoted by $\tau(\delta)$. If, on a set X, there is a topology τ and a proximity δ such that $\tau = \tau(\delta)$, then τ and δ are said to be *compatible*.

The proof of the following is trivial.

Lemma 1. (1) If $A \delta B$ and $B \subset C$, then $A \delta C$. (2) If $A \delta B$ and $A \subset C$, then $C \delta B$. (3) If $A \overline{\delta} B$, then $A \cap B = \emptyset$.

Lemma 2. For subsets A and B of an S-quasi-proximity space (X, c),

 $A \delta B$ iff $A \cap c(B) \neq \emptyset$ iff $A \delta c(B)$.

Proof. This follows readily from Axiom (II). The following is a direct result of Lemma 2.

Lemma 3. Every topological space (X, τ) with the topology τ has a

compatible S-quasi-proximity δ defined by

$$A \,\delta B \quad iff \ A \cap B \neq \emptyset,$$

where \overline{B} denotes the τ -closure of B.

The following lemma shows that in S-quasi-proximity spaces a δ -continuous mapping and a continuous mapping are equivalent.

Lemma 4. Let f be a mapping of an S-quasi-proximity space (X, δ_1) into an S-quasi-proximity space (Y, δ_2) . Then f is δ -continuous if and only if it is a continuous mapping of the topological space $(X, \tau(\delta_1))$ into the topological space $(Y, \tau(\delta_2))$.

Proof. Suppose that f is δ -continuous and that x is any point of $c_1(A)$. Then $\{x\} \delta_1 A$, which implies $f(x) \delta_2 f(A)$. It follows that $f(x) \in c_2\{f(A)\}$ and so $f\{c_1(A)\} \subset c_2\{f(A)\}$. $(c_1 \text{ and } c_2 \text{ denote the closure operators in}$ (X, δ_1) and (Y, δ_2) respectively.) Conversely let f be continuous and let $A \delta_1 B$. Since, by Lemma $2 A \cap c_1(B) \neq \emptyset$, it follows that $f(A) \cap f\{c_1(B)\}$ $\neq \emptyset$. From the continuity of f, we obtain that $f(A) \cap c_2\{f(B)\} \neq \emptyset$. This implies $f(A) \delta_2 f(B)$, so that f is δ -continuous. Q. E. D.

Proximity products. In the present section we attempt to obtain a direct construction of an S-quasi-proximity product space by a *proximal* approach. As we stated in the introduction, we modify the definition of Császár and Leader for the product proximity.

Definition 2. Let $\{(X_a, \delta_a): a \in \Lambda\}$ be an arbitrary family of S-quasiproximity spaces. Let $X = \prod_{a \in \Lambda} X_a$ denote the cartesian product of these spaces. A binary relation δ on the power set of X is defined as follows:

Let A and B be subsets of X. Define $A \delta B$ iff there is a point $x_0 \in A$ such that, for any finite covering $\{B_i: i = 1, 2, ..., n\}$ of B, there exists a set B_i satisfying $P_a[x_0] \delta_a P_a[B_i]$ for each $a \in \Lambda$, where each P_a denotes the projection from X to X_a .

Remark 2. Leader [3] defined a product proximity as follows: For A, $B \subset X$, $A \delta B$ iff for any finite coverings $\{A_i: i = 1, 2, ..., m\}$ and $\{B_j: j = 1, 2, ..., m\}$ of A and B respectively, there is an A_i and a B_j such that $P_a[A_i] \delta_a P_a[B_j]$ for each $a \in \Lambda$. But in order to prove that δ satisfies Axiom (II), it seems difficult to use Leader's definition for the S-quasiproximity.

Lemma 5. Let each (X_a, δ_a) be an S-quasi-proximity space and let A

E. HAYASHI

and B be subsets of $X = \prod X_a$. Then $A \delta B$ implies $P_a[A] \delta_a P_a[B]$ for each $a \in \Lambda$.

Proof. Suppose $A \delta B$. Since $\{B\}$ itself is a finite covering of B, there is a point x_0 of A such that $P_a[x_0] \delta_a P_a[B]$ for each $a \in \Lambda$. Applying Axiom (II) to each δ_a , we have $P_a[A] \delta_a P_a[B]$ for each $a \in \Lambda$. Q. E. D.

It follows from Lemma 5 that each projection P_a is δ -continuous and hence it is also continuous by Lemma 4 if X becomes an S-quasi-proximity space. Now we prove the main theorem.

Theorem 1. The binary relation δ given by Definition 2 is an S-quasiproximity on the cartesian product X. This space (X, δ) is said to be an S-quasi-proximity product space.

Proof. It suffices to show that δ satisfies Axioms (I)-(IV) of Definition 1 and Axiom (V') of Remark 1. It is easy to see that δ satisfies Axiom (I).

Axiom (II): Suppose $A \delta B$. If $x_0 \in A$ fulfils the condition in Definition 2, then clearly $\{x_0\} \delta B$.

Conversely suppose that $\{x_0\} \delta B$ for some x_0 of A. If $\{B_i: i = 1, 2, \ldots, n\}$ is any finite covering of B, then there is a set B_i such that $P_a[x_0] \delta_a P_a[B_i]$ for each $a \in \Lambda$. By Definition 2, this means $A \delta B$.

Axiom (III): Suppose $A \delta B$ and let $x_0 \in A$ satisfy the condition in Definition 2. If $\{D_i: i = 1, 2, ..., n\}$ is any finite covering of $B \cup C$, then it is a covering of B as well; hence there is an i such that $P_a[x_0] \delta_a P_a[D_i]$ for each $a \in \Lambda$. Thus $A \delta (B \cup C)$.

Conversely suppose $A \overline{\delta} B$ and $A \overline{\delta} C$. Then for any given $x \in A$, there are finite coverings $\{D_i: i = 1, 2, ..., n\}$ and $\{D_j: j = n + 1, ..., n + p\}$ of B and C respectively such that

 $P_{a}[x] \overline{\delta}_{a} P_{a}[D_{i}] \text{ for } a = t_{i} \in \Lambda,$ $P_{a}[x] \overline{\delta}_{a} P_{a}[D_{j}] \text{ for } a = s_{j} \in \Lambda,$

where $i = 1, 2, \ldots, n$ and $j = n + 1, \ldots, n + p$. Since $\{D_k : k = 1, 2, \ldots, n + p\}$ is a covering of $B \cup C$, we conclude that $A \overline{\delta} (B \cup C)$.

Axiom (IV): Let x be a point of X and let A be any set such that $x \in A$. Since $P_a[x] \in P_a[A]$ for each $a \in \Lambda$, by Lemma 1(3) we have $P_a[x] \delta_a P_a[A]$ for each $a \in \Lambda$. Thus $\{x\} \delta \{x\}$.

Axiom (V'): Let $\{x\}$ and A be subsets of X such that $x \ll A$, that is, $\{x\} \overline{\delta} (X - A)$. Then there is a finite covering $\{A_i: i = 1, 2, ..., n\}$ of (X - A) such that $P_a[x] \overline{\delta}_a P_a[A_i]$ for some $a = t_i \in \Lambda$, where i = 1, 2, ..., n. Equivalently $P_a[x] \ll X_a - P_a[A_i]$. Since each δ_a satisfies Axiom (V'), there exist G_i (i = 1, 2, ..., n) such that

(1)
$$P_{a}[x] \ll G_{i} \ll X_{a} - P_{a}[A_{i}] \text{ for } a = t_{i} \in \Lambda.$$

From the first half of (1), we have

(2)
$$P_{a}[x]\overline{\delta}_{a}(X_{a}-G_{i}).$$

Now we set

$$K_{i} = P_{a}^{-1}[X_{a} - G_{i}] = X - P_{a}^{-1}[G_{i}]$$

and set $K = \bigcup_{i=1}^{n} K_i$. It follows from (2) that

$$P_a[x]\delta_a P_a[K_i]$$
 for $a = t_i \in \Lambda$, $i = 1, 2, ..., n$.

Since $\{K_i: i = 1, 2, ..., n\}$ is a finite covering of K, we obtain $\{x\}\overline{\delta}$ K. This implies

$$x \ll X - K.$$

Next, from the second half of (1), we have

(4)
$$G_i \overline{\delta}_a P_a[A_i]$$
 for some $a = t_i$, $i = 1, 2, ..., n$.

On the other hand, since

$$X - K = \bigcap_{j=1}^{n} P_a^{-1}[G_j] \qquad (a = t_j),$$

it follows that

$$P_{a}[X - K] = P_{a} \left\{ \bigcap_{j=1}^{n} P_{t_{j}}^{-1}[G_{j}] \right\} \subset G_{i} \text{ for } a = t_{i}.$$

Hence for every point y of X - K,

$$P_a[y] \in G_i$$
 $(a = t_i; i = 1, 2, ..., n)$

By (4) and Lemma 1(2), we have therefore $P_a[y] \overline{\delta}_a P_a[A_i]$ for every y of X - K, where $a = t_i$; i = 1, 2, ..., n. Because $\{A_i: i = 1, 2, ..., n\}$ is a finite covering of (X - A), we get that

(5)
$$(X-K)\overline{\delta}(X-A)$$
, that is, $X-K \ll A$.

Relations (3) and (5) together show that δ satisfies Axiom (V'). This completes the proof.

E. HAYASHI

In view of Lemma 4, the following theorem shows that the Tychonoff product topology can be induced on an S-quasi-proximity product space $(X, r(\delta))$.

Theorem 2. The S-quasi-proximity δ on X given by Definition 2 is the smallest S-quasi-proximity for which each projection P_{α} is δ -continuous.

Proof. Let β be an arbitrary S-quasi-proximity on X such that each projection P_a is a δ -continuous mapping of (X, β) into (X_a, δ_a) . Then we must show that $A \beta B$ implies $A \delta B$ for $A, B \subset X$. By Axiom (II), there is a point x_0 of A such that $\{x_0\} \beta B$. Given any finite covering $\{B_i: i = 1, 2, ..., n\}$ of B, we can choose a set B_i such that $\{x_0\} \beta B_i$ by Axiom (III). Since each P_a is δ -continuous, $P_a[x_0] \delta_a P_a[B_i]$ for each $a \in \Lambda$. Because of Definition 2, we can conclude $A \delta B$. Q. E. D.

Finally, the author would like to thank the referee who indicated the revision of Definition 2 and the proof of Theorem 1.

REFERENCES

1. S. A. Naimpally and B. D. Warrack, *Proximity spaces*, Cambridge Tracts in Math. and Math. Phys., no. 59, Cambridge Univ. Press, London and New York, 1970. MR 43 #3992.

2. E. F. Steiner, The relation between quasi-proximities and topological spaces, Math. Ann. 155 (1964), 194-195. MR 29 #581.

3. F. W. Stevenson, *Product proximities*, Fund. Math. 76 (1972), 157-166. MR 46 #4491.

DEPARTMENT OF MATHEMATICS, NAGOYA INSTITUTE OF TECHNOLOGY, GOKISO, SHOWA-KU, NAGOYA 466, JAPAN