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PRODUCTS OF STEINER'S QUASI-PROXIMITY SPACES

E. HAYASHI

ABSTRACT.    E. F. Steiner introduced a qua si-proximity   S  satisfying

A  8 B   iff {x\ 8 B   for some  x  of  A.   The purpose of this paper is to de-

scribe the Tychonoff product of topologies in terms of Steiner's quasi-

proximities.   Whenever  iX ,   S  )  is the Steiner quasi-proximity space, the

product proximity on  X = ilX     can be given, by using the concept of fi-

nite coverings, as the smallest proximity on X which makes each projec-

tion S-continuous.

Introduction.   E. F. Steiner [2] introduced a quasi-proximity  <5  satisfy-

ing A 8 B iff {a\ 8 B  fot some a of A.   This note is devoted to the study

of a product proximity on  X = IlX  , where each  (X     8 ) is the above Steiner

quasi-proximity space.   As F. W. Stevenson [3] pointed out, there are three

equivalent definitions of a product proximity.   Especially, Császár and

Leader defined a product proximity by using finite coverings L3J-   Unfortu-

nately, for Steiner's quasi-proximity, it seems difficult to us to define the

product proximity in the same way as Császár and Leader. We must modify

the definition of a product proximity in our case (Definition 2).    We then show

that the Tychonoff product topology can be induced on the cartesian product

X = nXfl in terms of the quasi-proximity mentioned above.

The reader is referred to S. A. Naimpally and B. D. Warrack [l] for def-

initions not given here.

Preliminary definitions and lemmas.

Definition 1.   A binary relation 8 defined on the power set of X  is

called a Steiner's or S-quasi-proximity on  X iff ¿5  satisfies the axioms be-

low.

(I)   For every A C X, A 8 (ß  i8   means "not-S").

(II) A 8 B  iff  {a\ S B     fot some   a £ A.

(III) A 8 iB U C) iff  A 8 B  or  A 8 C.

(IV) For every  x e X, jx| 8 {x\.

(V)   A 8 B implies that there exists a subset G such that  A 8 C and

(X - C) 8 B.
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Remark 1.   Clearly Axiom (II) is equivalent to Axiom (II ) below.

(II )   For an arbitrary index set A,

U   AA8B   iff A   8B tot some p e A.

Furthermore, in the 5-quasi-proximity we can replace Axiom (V) with

Axiom (V ) below.

(V ) If x « A, then there exists a set B such that x « B « A. (In

general, P « Q means P 8 (X — Q) and Q is said to be a 5-neighborhood

of P.)

In fact, it is easily seen that Axiom (V) implies Axiom (V ).   Conversely

we show that Axiom (V) follows from Axioms (I)—(IV) and (V ).   Suppose

ASB.   By Axiom (II), {x\ 8 B, i.e.  x « X - B  fot each x e A.   Then it

follows from Axiom (V ) that there isa set  C    such that  x « C    « X — B
_ x x

fot each x £ A.   Since {x\ 8 (X - C ) for each x e A,

M Six -   (J   c\    by Axiom (III).
V        xeA       /

Setting   U    A C    = C, we obtain   AS (X - C) by Axiom (II).   On the other

hand, since  C    8 B  for each  x £ A, we have  C 8 B  by Axiom (II ).   Thus

Axiom (V) surely holds.

Let  (X, 8) be an S-quasi-proximity space.   For every  A C X, we set

ciA) = ¡x: {x\ 8 A).   Then the operator c is a topological closure operator

and so  X is a topological space [2].   This topological space is denoted by

(X, c)  and the topology induced by 8 is denoted by  AS).   If, on a set  X,

there is a topology  r and a proximity  5 such that  r = r(8), then  r and 8 are

said to be compatible.

The proof of the following is trivial.

Lemma 1.   (1)   If A 8 B  and B C C, then  A S C.

(2) If A 8 B  and AC C, then  C 8 B.

(3) If AS B, then A O B = 0.

Lemma 2.   For subsets A  and B  of an S-quasi-proximity space (X, c),

ASB    iff A n c(B) 4 0    iff A 8 c(B).

Proof.   This follows readily from Axiom (II).

The following is a direct result of Lemma 2.

Lemma 3„   Every topological space  (X, r) with the topology  r has a
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compatible S-quasi-proximity 8 defined by

A SB    iff A n B 4 0,

where B  denotes the r-closure of B.

The following lemma shows that in S-quasi-proximity spaces a S-contin-

uous mapping and a continuous mapping are equivalent.

Lemma 4.   Let f be a mapping of an S-quasi-proximity space (X, 8 A

into an S-quasi-proximity space (Y, SA.   Then f is S-continuous if and only

if it is a continuous mapping of the topological space (X, r(<5.))  into the

topological space  ÍY, r(§_)).

Proof.   Suppose that / is S-continuous and that  x is any point of  c^iA).

Then {*! <5j A, which implies fix) 82 /(A).   It follows that fix) £ c2i/(A)S

and so f{c^iA)\C c2{fiA)\.   (cj  and  c2 denote the closure operators in

(X, <5j)  and  (V, 82) respectively.)   Conversely let / be continuous and let

A Sj B.   Since, by Lemma 2 A n c¿B) 4 0, it follows that /(A) n fic^B)]

4 0-   From the continuity of /, we obtain that /(A) n c2{fiB)\ 4 0-   This

implies  /(A) S2 /(ß), so that / is <5-continuous.     Q. E. D.

Proximity products.   In the present section we attempt to obtain a direct

construction of an S-quasi-proximity product space by a proximal approach.

As we stated in the introduction, we modify the definition of Császár and

Leader for the product proximity.

Definition 2. Let {iX , 8 ): a e AJ be an arbitrary family of S-quasi-

proximity spaces. Let X = I] eAX denote the cartesian product of these

spaces.   A binary relation  8 on the power set of  X is defined as follows:

Let A and B  be subsets of X.   Define A ¿5 B iff there is a point x„ e

A  such that, for any finite covering {B .: ¿ = 1,2,..., n\ of B, there exists

a set B . satisfying P  lxn] 8    P  [B .]  for each  a e A, where each  P     de-
7 J     to      a    o      a     a     i ' a

notes the projection from X to  X .

Remark 2.   Leader [3] defined a product proximity as follows:   For A,

B C X,   A 8 B  iff for any finite coverings  {A.: i = 1, 2,..., m\ and  {B .: j =

1, 2, . . . , n\ of A  and  B  respectively, there is an  A . and a B .  such that

P[a.] S    P  [ß .]  for each  a £ A.   But in order to prove that 8 satisfies
a     i      a     a     j r

Axiom (II), it seems difficult to use Leader's definition for the S-quasi-

proximity.

Lemma 5.   Let each i%„■> 8 ) be an S-quasi-proximity space and let  A
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and B  be subsets of X = I1X .   Then ASB  implies P  [A] 8   P  \B] for
' a r a a     a '

each a £ A.

Proof.   Suppose  ASB.   Since  |B¡ itself is a finite covering of B, there

is a point xQ  of A  such that P JlXq] 8a F J.B] fot each a £ A.   Applying

Axiom (II) to each 8a, we have  P  [à] 8a P J.B] fot each  a £ A.    Q. E. D.

It follows from Lemma 5 that each projection  P     is 5-continuous and

hence it is also continuous by Lemma 4 if X becomes an S-quasi-proximity

space.   Now we prove the main theorem.

Theorem 1.   The binary relation 8 given by Definition 2 is an S-quasi-

proximity on the cartesian product  X.    This space (X, 8) is said to be an

S-quasi-proximity product space.

Proof.   It suffices to show that 8 satisfies Axioms (I)—(IV) of Definition

1 and Axiom (V ) of Remark 1.   It is easy to see that S satisfies Axiom (I).

Axiom (II):   Suppose  ASB.   If xQ e A  fulfils the condition in Defini-

tion 2, then clearly  íxQ¡ 8 B.

Conversely suppose that  {xQ¡ 8 B  fot some  x„  of  A.    If {B .: i = 1,

2, . . . , n\ is any finite covering of  B, then there is a set  B .  such that

P  [x„] S   P   [B .]  for each  a e A.   By Definition 2, this means   A 8 B.a    \j      a     a     i ' '

Axiom (HI):   Suppose ASB  and let xQ £ A satisfy the condition in

Definition 2.   If {D .: i = 1, 2, . . . , n\ is any finite covering of B \j C, then

it is a covering of B   as well; hence there is an  i such that  P  [x„] <5   P [7>]
° J a    u      a    a     i

for each a e A.  Thus A 8 (B U C).

Conversely suppose ASB and A 8 C.   Then for any given x e A, there are

finite coverings \D.: i = 1, 2,. .., «} and  ¡D .: / = n + 1, . . ., n + p\ of B  and

C respectively such that

Pjx] 8a Pj.Dt]     foi a = t. £ A,

P  [x] S    P ID]    t or a = 5. e A,
a a     a     7 l

where i = 1, 2, . .. , n and j = n + 1, . .. , n + p.   Since (D  : & = 1, 2,. .. ,

?7 + p} is a covering of B U C, we conclude that  A S  (B U C).

Axiom (IV):   Let  x be a point of X and let  A be any set such that x

£ A.   Since  P  [x] £ P  [á]  for each  a £ A, by Lemma 1(3) we have
a a '    J

Palx] Sa PJ.A] fot each a £ A.   Thus  \x] 8 \x\.

Axiom (V ):   Let  ¡x! and  A  be subsets of X  such'that  x « A, that is,

ixj 8 (X - A).   Then there is a finite covering {A.: i = 1, 2,. .. , n| of (X -

A) such that P  [x] ¿5    P  [A.] for some a- t. £ A, where z = 1, 2,. .. , n.
a a     a     i i
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Equivalently  P   [x] « X   - P  [A.].   Since each 8    satisfies Axiom (V)
* J       a a a .   i a '

there exist  G. (z = 1, 2,.. . , «)  such that

(1) P lx] « G. « X   - P [A .]    for a = /. e A.
a z a a      7 7

From the first half of (1), we have

(2) PaMSaiXa-G).

Now we set

K.= P-\X   - G.] = X- P-'[G.]
z a a 1 a 1

and set K = U"=1K..   It follows from (2) that

P WS   P [K]     for a = t. £ A,        i = 1, 2, ... , 72.
a a    £2U   7 7 '

Since  {K.: i = 1, 2, . . . , n\ is a finite covering of K, we obtain }x¡ ¿5 /C   This

implies

(3) x « X - K.

Next, from the second half of (1), we have

(4) G.8~PlA]    for some  a = C,       i=l,2,...,n.
1    a    a     1 1

On the other hand, since

7Z

X - K = fi  P; '[G^       (a = í.),
7 = 1

it follows that

PlX - K]= Pl(\  P- llG.] \ C G.    tot a = 14.,{r> ,-'tG,.ij

Hence for every point y of X     K,

Paly] £ G.       (a = t.-   i=l,2.n).

By (4) and Lemma 1(2), we have therefore  P Q[y] 8 a P   [A.]  for every y of

X - K, where  a - t.; i = 1, 2, . . . , tz.   Because {A.: f = 1, 2,..., »} is a

finite covering of (X - A), we get that

(5) (X- K)<5(X- A),    that is,    X-K«A.

Relations (3) and (5) together show that 5  satisfies Axiom (V ).   This com-

pletes the proof.
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In view of Lemma 4, the following theorem shows that the Tychonoff

product topology can be induced on an S-quasi-proximity product space  (X,

HS)).

Theorem 2.   The S-quasi-proximity 8 on  X given by Definition 2 is the

smallest S-quasi-proximity for which each projection P     is 8-continuous.

Proof. Let ß be an arbitrary S-quasi-proximity on X such that each

projection P is a S-continuous mapping of (X, ß) into (X , 8 ). Then we

must show that A ß B implies A 8 B for A, B C X. By Axiom (II), there is

a point xQ of A such that {xQ\ ß B. Given any finite covering {B .: i = 1,

2, ..., n] of B, we can choose a set B. such that {xQ\ ß B¿ by Axiom (III).

Since each P is S-continuous, PaL*n] 8 P [ß ] for each a £ A. Because

of Definition 2, we can conclude  ASB.     Q. E. D.

Finally, the author would like to thank the referee who indicated the

revision of Definition 2 and the proof of Theorem 1.
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