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ON HOMOGENEOUS HEREDITARILY
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ABSTRACT. Let M denote the class of all hereditarily unicoherent
Hausdorff continua in which each indecomposable subcontinuum is irre-
ducible. It is shown that if the continuum M in M is decomposable,
then the set of weak terminal points of M is a nonempty, proper subset.
The following generalization of a theorem of F. Burton Jones is an im-
mediate corollary: if the continuum M in M is homogeneous, then M
is indecomposable. As an application, it is proved that if X is a homo-
geneous, hereditarily unicoherent Hausdorff continuum which is an im-
age of an ordered compactum, then X is an indecomposable metrizable
continuum.

1. Introduction. F. Burton Jones has proved that every homogeneous
hereditarily unicoherent metric continuum is indecomposable [7]. It is the
primary purpose of this note to give a short, simple proof of Jones’ theorem.
At the same time, we extend his theorem to the class J of all hereditarily
unicoherent Hausdorff continua in which each indecomposable subcontinuum
is irreducible. Our proof is based on the observation that if M is a decom-
posable continuum in M, then the set of weak terminal points of M is a non-
empty, proper subset (hence M cannot be homogeneous).

As an application of our result in the nonmetric setting, we prove that
if X is a homogeneous hereditarily unicoherent Hausdorff continuum which
is an image of an ordered compactum, then X is an indecomposable metriz-

able continuum.

2. Definitions and preliminary remarks. By a continuum we mean a com-
pact, connected Hausdorff space. A continuum is hereditarily unicoherent

if the intersection of any two of its subcontinua is connected.
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Notation. Throughout this paper M will denote the class of all continua
M such that

(1) M is hereditarily unicoherent, and

(ii) every indecomposable subcontinuum of M is irreducible.

Remark. The class M was defined and studied in [4). It is well known
that every hereditarily unicoherent metric continuum belongs to M (e.g., [6]).
The class M may coincide with the class of all hereditarily unicoherent con-
tinua; i.e., condition (ii) may be superfluous. In fact, it has been conjec-
tured that every indecomposable continuum is irreducible. Some partial re-
sults concerning this problem are contained in [1], [3], and [5]. We shall use
the fact that continua in M contain maximal irreducible subcontinua [2, The-
orem 3.7]).

Let X be a hereditarily unicoherent continuum. If x and y are points
of X, then (x, y) will denote the unique subcontinuum of X which is irre-
ducible from x to y. A point p of X is said to be a terminal point of X if
each irreducible subcontinuum containing p is of the form (p, x) for some x
in X [10]. We define a point p of X to be a weak terminal point if there ex-
ists a point x in X such that (p, x) is a maximal irreducible subcontinuum of X.

If M belongs to T, then (using the fact that every point is contained in
a maximal irreducible subcontinuum) it follows immediately that every termi-
nal point of M is a weak terminal point. The converse is false. For exam-
ple, the dyadic solenoid is a homogeneous indecomposable continuum in N
which consists entirely of weak terminal points, but which contains no ter-
minal point.

The reader is referred to [6] for definitions of undefined terms and for a

general discussion about continua.
3. Homogeneity and weak terminal points.

Lemma 1. If the continuum M is decomposable and belongs to M, then

the set of weak terminal points of M is a nonempty, proper subset.

Proof. According to Theorem 3.7 of [2], M contains a maximal irreduci-
ble subcontinuum. Thus the set of weak terminal points of M is nonempty.
Let M= A UB where A and B are proper subcontinua. Choose a € A - B,
b€ B-A, and p € (a, b) N (A N B). Suppose that p is a weak terminal point
of M and let (p, x) be a maximal irreducible subcontinuum. Assume that x
€ B. Since p € (a, b) Ca, x) Ux, B either p € (@, x) or p € (x, b). If p
€ (a, x), then (p, x) C (@, x) — {a} since (p, x) CB. This contradicts the as-

sumption that (p, x) is maximal. Thus we may assume that p € (x, b)and
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p € (a, x). Observe that b ¢ (a, p) CA. Also b ¢ (a, x); for otherwise p €
(a, b) C(a, x) contrary to our assumption. Thus (p, x) C (@, p) U(a, x) CM
- {b}. In particular, (p, x) C(x, b) - {b}, which contradicts the assumption
that (p, x) is maximal. It follows that p is not a weak terminal point, and
the proof is complete.

As an immediate consequence of Lemma 1 we obtain our generalization

of Jones’ theorem.

Theorem 1. If M is a homogeneous continuum which belongs to N, then

M is indecomposable.

Proof. If M is decomposable, then (by Lemma 1) there exist points p
and ¢ in M such that p is a weak terminal point and ¢ is not. This con-
tradicts the assumption that M is homogeneous.

We also obtain a characterization of the indecomposable continua in M.

Theorem 2. Let M be a continuum in W. Then M is indecomposable

if and only if each point of M is a weak terminal point.

Proof. If each point of M is a weak terminal point, then M is indecom-
posable by Lemma 1. If M is indecomposable, then M is irreducible. Con-
sequently M contains two disjoint composants, say C; and C, (see [6D).
If p ¢ C; (i =1, 2), then M = (p, x) for each x € C;. It follows that each

point of M is a weak terminal point.

4. Homogeneous images of ordered compacta. A continuum X is said
to be an image of an ordered compactum if there exists a compact totally or-
dered space K and a continuous surjection f: K — X. A survey of the most

important facts concerning such spaces is given in [9].

Lemma 2. If X is an indecomposable continuum which is an image of

an ordered compactum, then X is metrizable.

Proof. If X is not metrizable, then some pair of points {p, g} separates
X[12]. Let X=1{p, g}=U UV bea separation. Then X — U has at most
two components, so X contains a proper subcontinuum with nonempty inte-

rior. According to Theorem 3-41 of [6], X is decomposable.

Lemma 3. If X is a hereditarily unicoherent continuum which is an im-

age of an ordered compactum, then X belongs to M.

Proof. If X is an image of an ordered compactum, then so is every sub-

continuum of X. By Lemma 2, every indecomposable subcontinuum of X is
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metrizable, hence irreducible. Consequently X belongs to M.

Theorem 3. If X is a homogeneous, hereditarily unicobherent continuum
which is an image of an ordered compactum, then X is an indecomposable

metrizable continuum.

Proof. By Lemma 3, X belongs to M. According to Theorem 1, X is
indecomposable. Thus, by Lemma 2, X is metrizable.

Remark. Neither conclusion in Theorem 3 is valid without the assump-
tion that X is hereditarily unicoherent; i.e., there exist decomposable non-
metrizable homogeneous continua which are images of ordered compacta.
Such an example can be obtained by identifying the endpoints of a nonmetriz-
able ordered continuum which is homeomorphic to each of its nondegenerate

subcontinua (see [11]).

5. Some questions. (1) Is every (hereditarily unicoherent) indecompos-
able continuum irreducible?

(2) Is every homogeneous, hereditarily unicoherent continuum indecom-
posable?

According to Theorem 1, an affirmative answer to (1) implies an affirma-
tive answer to (2).

(3) Is every homogeneous continuum which is an image of an ordered

compactum either metrizable or a *

‘generalized simple closed curve’’ (i.e.,
a continuum obtained by identifying the endpoints of some ordered continuum)?
It was observed in [7] that Theorem 1 implies that every nondegenerate
homogeneous plane continuum which does not separate the plane is indecom-
posable. More recently, F. Burton Jones has proved that such a continuum
is actually hereditarily indecomposable [8]. However the following question,
raised in [7], is still unanswered.
(4) Is every nondegenerate homogeneous plane continuum which does

not separate the plane a pseudo-arc?
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