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APPLICATIONS OF GRAPH THEORY TO MATRIX THEORY

FRANK W, OWENS

ABSTRACT. Let 4 Preee Ak be n X n matrices over a commutative ring
R with identity. Graph theoretic methods are established to compute the
standard polynomial {4 P Ak.]‘ It is proved that if £ <2n — 2, and if the
characteristic of R either is zero or does not divide 4/(}%4n) — 2, where [
denotes the greatest integer function, then there exist n X n skew-symmetric
matrices Al""’ Ak such that [Al" vy Ak] #0.

1. Introduction. Let A +++» Ay be nx n matrices over a commutative
ring R with identity. Let S, be the symmetric group of degree k. Define
the standard polynomial [A P Ak] by

(A, A )= sgn(@A "+ Ay
where the summation is over all permutations 0 € §,.

Amitsur and Levitzki proved algebraically [1] that [A P Ak] =0 if
k> 2n. Their proof is elementary but lengthy. Swan gave a simpler and
shorter graph theoretic proof of their theorem [8], [9]. Amitsur and Levitzki
also proved that if k < 2#, then there exist n x n matrices A ,..., A, such
that [A P Ak] # 0, i.e., their theorem is sharp. See [1], [7] and [8] for
examples. It is known [7] that if & < 27, then there exist 7 x n symmetric
matrices A, ..., A, such that [Al'”" Ak] £0.

Kostant proved in [3] that [A P Ak] =0 if > 2n -2, where 7 is
even, and each of the matrices A]. is complex skew-symmetric. In this paper
we prove using graph theoretic methods that if £ <2n — 2, and if the charac-
teristic of R either equals 0 or does not divide 41(¥4n) - 2, where I denotes
the greatest integer function, then there exist n x n skew-symmetric matrices
Al,..., Ay such that [A s Ak] # 0. This solves Conjecture 2 in [7] in
the affirmacive. In particular, for n even this implies that Kostant’s theorem
is sharp. Kostant’s proof is nonelementary and uses cohomology theory. In
[4] we present a graph theoretic proof that [A TEREY Ak] =0 for k>2n -2
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if each of the matrices A]. is skew-symmetric, and R is an integral domain
not of characteristic 2. This generalization of Kostant’s theorem solves

Conjecture 1 in [7] in the affirmative. The solutions of Conjectures 1 and 2
have been obtained independently by Hutchinson [2] and by Rowen [6]. Our
results in this paper are somewhat stronger for the case when the character-

istic of R is larger than 2. See [2], [S] and [6] for related results.

2. Algebraic preliminaries. We first state some algebraic properties of
[,...,L [,...,] is alternating and multilinear. [ ,..., ] may be defined

recursively by [A] = A and

k
- 5
(A A= alAa, o 4,00, 4]

i=1
-Z(—l)k"[Al,...,A L AJAL for k> 1,

where the notation A]. means that the matrix A, is absent.
The following propositions are easily established using the alternating
IR} . !
and multilinear properties of [ ,..., 1. Let A’ denote the transpose of the

matrix A.

Proposition 1. If A,,..., A, are nx n matrices, then
@ A,..., 4] =14),..., AL

b) (A, A =(-D*R-D72[4 .. AL

(@ Ay, 4] = (mDRGE=D72[40 4Ll

Proposition 2. If each A. is an n x n skew-symmetric matrix, then
' k(k*+1)/2
@ [, A = (1) (oo, 4.
(b) [A P Ak] is symmetric iff k=0 or 3 (mod 4) and is skew-sym-
metric iff k=1 or 2 (mod 4).

Proposition 3. If each A is an n X n symmetric matrix, then

(@) (A peen, 4, = (=D PE=D/204 0],

(b) [Al" . Ak] is symmetric iff k=0 or 1 (mod 4) and is skew-sym-
metric iff k=2 or 3 (mod 4).

Let e . be the elementary matrix unit which has a 1 in the (i, j)th posi-
tion and zeros elsewhere. Let S , 1 <i<j<n, denote the n x n skew-
symmetric matrix unit e, TR Let t.., 1< i1 <j<n, denote the nx n
symmetric matrix unit e; it (1- 8 )e i whete 3 is the Kronecker delta.

Then
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(2.1) € €h= Sjbeil’
SiSp= (e meey —ep) =e e —een —eie, e
=0,4e, - S48 — Oipeir+ S %5h.
(0 if j<bh,
2.2) i1 if j=h,
= { _aibejl if h<j<l,

—ep = Oye  ifj=1,

—Bibeﬂ+8.e. if 7> 1,

tiithr = (el.]. + (1= Bi].)e].i')(ehl +(1- 8bl)e1h)

=it (- Bbl)eijelb +(1 "‘Sij)e,‘iehz +(1- 31',')(1 - 8hl)ejielb
= ijeil + (1= Bhl)leeih +(1- 8ij)8ihejl + (1 - 31.].)(1 - Shl)aile;‘h
0 if j<b,
2.3) ., if j= b,
if h<j<l,
= {%nei ! !
Sjbeij +(1 - 3bj)eib +(1- 3ij)8ihejj if =1,
if 7> 1L
Bibejl +(1- 8bl)8ilejb if j

3. Graph theoretic preliminaries. Let G be a graph having n vertices
Viseeo, v, and k edges €peees € If v, and v, are vertices of G, then
an Euler path in G from v; to v, is a permutation @ € §; for which there
exists an orientation of G such that

(a) e,y starts at v,, i.e., v, is the initial vertex of €,

(b) e, €nds at Vi i.e., v, is the terminal vertex of e_,, and

(c) the terminal vertex of €uh is the initial vertex of € h+1) for 1<h <k,

If, in addition, G is a digraph, then a unicursal path [8] in G from v,
to v; is an Euler path in G from v; to v, with respect to the given orienta-
tion of G. Thus if G is a digraph, every unicursal path in G from v; to v,
is also an Euler path in G from v; to v, but not conversely, i.e. we deal
only with the given directions of the edges when considering unicursal paths.

If G is a digraph without loops and  is an Euler path in G from v, to
Vi then some of the edges of G may have directions induced by @ opposite
to their given directions. We refer to the number of such edges by Hw). Thus
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the number of edges of G which have directions induced by w which are the
same as their given directions is & - rw).

Let each A]. be some e,,. Define a digraph G as follows. G has =
vertices vy,..., v , and G has a directed edge e from v, to v, for each

A;=e,,. The following theorem is due to Swan [8] and is immediate from

hl*
multiplication rule (2.1).
Theorem 1. The (i, )th entry in [A,..., Ak] is 2 sgn(w), where the

summation is over all unicursal paths @ in G from v, to v

Let each A]. be some s,,. Define a digraph G as follows. G has n
vertices v,,..., v, and G has a directed edge e; from v, to v, for each
A,’ =s,,+ The next theorem follows immediately from Theorem 1 and multi-

plication rule (2.2).

Theorem 2. The (i, th entry in [A},..., A,] is S (=1 sgn(w),

where the summation is over all Euler paths o in G from v, to v

Let each AJ. be some t,,. Define a graph G as follows. G has n ver-
tices v,..., v ,and G has an edge e from v, to v, for each A]. =t
The next theorem follows immediately from Theorem 1 and multiplication rule

(2.3).
Theorem 3. The (i, j)th entry in [A,..., A, ] is Z sgn(w), where the

summation is over all Euler paths w in G from v, to v

It is easy to give a similar graph theoretic interpretation to [A REREY Ak]
when the A’.’s are a mixture of elementary, skew-symmetric and symmetric

matrix units.
4. Main result. This section establishes

Theorem 4. If k < 2n — 2, and if the characteristic of R either equals 0
or does not divide 41(%n) — 2, where | denotes the greatest integer function,

then there exist n x n skew-symmetric matrices A,,..., A, such that

(A,....A)#o0.

By the recursion formula for [A P Ak] in §2 it is sufficient to prove
Theorem 4 for the case & =2n -3, n> 1. For this case let the matrices
Apeees Apbe s 0 553 5130 Sy Sygrenes Spe1m® Spm2,m and let B =
[Ay,..., A By direct computation B, =s,, and By =~2(e;, +e,, + e;,).
Hence, Theorem 4 is true for » =2 or 3. Figure 1 illustrates a portion of

the digraph G described preceding Theorem 2 associated with B .
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Figure 1. G, n>1, has n vertices and 2n - 3 edges.

Lemma 1. If n> 3, then there exists an integer c, such that B, =
Cn(eZ,n—
Cul2,nm1 for n odd > 3.

n-1 . _ =
Lt (-1) en_l’z), i.e., Bn =C.55 1 for n even> 3, and Bn =

2,n

Proof. Proposition 2 implies that B is skew-symmetric iff 7 is even
and is symmetric iff » is odd. v, and v, _, are the only vertices of G of
odd order since 7> 3. Hence, the only possible Euler paths w in G are
from v, to v, _, orfrom v _, to v,. Apply Theorem 2.

The first few computed ¢ 's are ¢, =cg = -0, cg=¢y=-10 and cg =
—14. For later convenience we set ¢, = €y =-2.

This paragraph is not necessary for the proof of the theorem but may be
of interest. If E denotes the number of Euler paths w in G from v, to
v,_pthen E)=1,E,=2,E =6,E,=16,E, =44, E, =120 and E =
328. We set E, =0. Then the number of such Euler paths

(a) with w1 =1 is E__, for n>1,

(b) with w1l =2 is En-l for n> 1, and

(c¢) with w1l =5 is 2[?"_2 for n> 2.

(a), (b) and (c) imply that the E ’s satisfy the difference equation E =
2E,_,+2E__, for n> 2 with the initial conditions E; =0 and E, =1

whose solution is
E = (W3/60((1 +y3)* "= (1-y3)*~ N

Lemma 2. Let P denote the set of all Euler paths in G from v
_pr Then 2(=1)"(*) sgn(w) equals

(@) c,_, for n>3, where the summation is over all w € P such that

2[0

v
n

wl =1,

(b) €Cpa2 = Cpo3 for n> 4, where the summation is over all w € Pn
such that vl =2,

(c) 0 for n> 4, where the summation is over all w € Pn such that
wl =5.
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Proof of (a). w2 =3 for each w € P_ such that w1 = 1. Define f; by
f;{(x)=x+jand f:12, 4,5,...,2n -3} —1{1,2,3,...,2n~5} by f(2)=1
and f(x) =x -2 for 4 <x <2n-3. Define F:{w € P |wl=1} =P _, by
o' =Flw)=fowo° f,» F is a 1-1 correspondence such that o) = dw’) +1
and sgn(w) = —sgn(w') for each w € P such that wl = 1. Therefore, ¢ _,

=3(-1y" sgn(w'), where the summation is over all o' € P _ 5

= 3(-1)" sgn(w), where the summation is over all ® €P_ such thatwl = 1.

)r(w)

Proof of (b). By direct computation (-1 sgn(w)=0=c

-c,,
where the summation is over all @ € P such that wl = 2. Hence,awe niay
assume that 7> 5. w2 =3, 4 or 7 for each w € P suchthat 0l =2. w3 =1
and w4 =5 for each w € P such that wl =2 and w2 = 3. Define [:{4, 6,
7yeeey2n =3t —>1{1,2,3,...,2n -7 by f(4) =1 and f(x) =x - 4 for
6 <x<2n-3. Define F:{w € Pn|a)1 =2 and w2 = 3} — P, _, by o' =
Flw)=fowo 4 F is a 1-1 correspondence such that Aw) =He') + 1 and
sgn(®) = ~sgn(w') for each @ € P such that 1 = 2 and w2 = 3. There-
fore,c _,= 3 (-1)®" sgn(w'), where the summation is over all &' €
P = S(-1)) sgn(w), where the summation is over all w € P such
that wl =2 and w2 =3,

w3 =5,60r9 for each w € P, suchthat w1 =2 and w2 =4, 04 =1,
w5 =3 and w6 =7 for each w € P such that w1 =2, w2=4 and w3 =5.
Define f:16,8,9,...,2n -3} —1{1,2,3,...,22 -9} by f(6) =1 and [(x)
=x—6 for 8<x <2n - 3. Define Fi{w € P |wl =2, w2 =4 and w3 =5}—
P, _5 by o =Flw=fowo f¢ F is a 1-1 correspondence such that dw) =
Hw') + 2 and sgn(w) = sgn(w') for each w € P such that wl =2, w2 =4,
and w3 =5. Therefore, Cpoz = 2( —1)'(w,) sgn (w'), where the summation is

over all o' € Pn =3(-1)@ sgn(w), where the summation is over all

-3
w € P suchthat wl =2, w2 =4 and w3 =5.

If wl =2, w2 =4 and w3 =6, then Vg and v, are connected by two
subpaths of w, namely e, and the subpath consisting of the edges e, €5
ey ¢5 and ¢4
orientations induced by w opposite to their given orientations. We may

. Either exactly two or exactly three of these six edges have

place the set of all w € P such that ®1 =2, w2=4 and @3 = 6 into 1-1

correspondence with itself by interchanging the order of these two subpaths
if exactly 2 of the 6 edges have orientations induced by w opposite to their
given orientations, and by interchanging the order of these two subpaths and
reversing their induced orientations if exactly 3 of the 6 edges have orienta-
tions induced by @ opposite to their given orientations. If @ < o' denotes

this correspondence, then Aw) = {w') and sgn(w) = —sgn(®"). Therefore,
S (-1 sgnl(w) = -2 (-1’ sgn(w), and so (=1 sgn(w) =0,
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where each summation is over all w € Pn such that wl =2, w2 =4 and
®3 =6.

We may place the set of all w € P such that wl =2, 2 =4 and
w3 =9 into 1-1 correspondence with itself by reversing the induced orienta-
tion of the cycle consisting of the edges e, e;, e, 5 and e, for each
w € P suchthat wl =2,02=4 and 03 =9. If 0 & ®' denotes this cor-
respondence, then Aw) = ') + 1 (mod 2) and sgn(w) = sgn (@"). Therefore,
S(=1)" sgn(w) = -2(=1)""“) sgn(w), and so =(-1)"“) sgn(w) =0,
where each summation is over all w € P such that wl =2, ®2 =4 and
w3 =9.

If wl =2 and w2 =7, then there exists 7, 4 <i<2n -7, such that
wli +7) €11, 3, 4, 5} for 0 <j<3. Define f:16,8,9,...,2n -3} —
{1,2,3,...,2n=9} by f(6) =1 and f(x) = x = 6 for 8 < x < 2n — 3. Define
o =F(w) by o'h=fowlh+2) for 1<h<i-2 and w'h=f0°wlh+06) for
i-2<h<2n-9. F: {w GPnlwl =2 and 0)2=7}—+Pn_3 is a 2-1 map
such that rw) = Aw") + 2 and sgn(w) = —sgn(w') for each w € P_ such
that wl =2 and @2 =7. Therefore, ~2¢ _, = -23(-1)7“" sgn(o'), where
the summation is over all ' € P _3= (=1 sgn(w), where the summa-
tion is over all @ € P such that w1 =2 and w2 =7.

Proof of (¢). By direct computation (1)) sgn(w) = 0, where the
summation is over all w € P4 such that wl =5. Hence, we may assume that
n>5. w2=4,6 or9 for each w € P such that ol =5. 6 =7 for each
@ € P_ such that w1 =5 and @2 = 4. Define [:16,8,9,...,2n -3} —
{1,2,3,...,22 -9} by f(6) =1 and f(x) =x - 6 for 8 <x <27 —3. De-
fine F:{w € P |ol =5 and w2=41 - P, _, by o' =Flw)=fecwo /.

F is a 2-1 map such that dw) = {w') + 2 and sgn(w) = sgn(w’) if w3 =3,
w4 =1 and 5 =2, and Hw) = ') + 3 and sgn(w) = -sgn(w') if w3 =2,
w4 =1 and w5 =3 for each w € P such that wl =5 and ®2 = 4. There-
fore, 2cn_ = 22(—1)’(0)') sgn (wl), where the summation is over all ' €
P 3= (-1 sgn(w), where the summation is over all w € P such
that wl =5 and w2 =4.

If wl =5 and @2 = 6, then there exists 7, 4 <7< 2n ~ 7, such that
wli +]) €ll, 2, 3, 4} for 0 <j<3. Define f:17,8,9,..., 2n~-3} = {1, 2,
3,...,2n -9} by f(x) =x — 6. Define o' = F(w) by ©'h =f° w(h +2) for
1<h<i-2and @'h=/0alh+6) for i—=2<h<2n-9. F:{o €P |ol =5
and w2 =6} —> P _, isa 2-1 map. If wi =2, then o) =rw') + 2 and
sgn(w) = —sgn(w"). If wi=3, then Aw) =Aw') + 1 and sgn(w) = sgn(w’).
If wi=4 and o(i +1) =2, then dw) = Aw') + 3 and sgn(w) = sgn(w’).

If wi=4 and w(i+ 1) =3, then Aw) = ') + 2 and sgn(w) = —sgn(w").
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Thus, (- 1)) sgn(w) = (- 17" sgn(w") for each w € P such that
wl =5 and w2 = 6. Therefore, —2¢ ne3 = -23(- 1)’(“) )sgn(w ), where the

summation is over all @' € P 3 = S(=1)) sgn(w), where the summation
is over all w € P such that a)l =5 and w2 =0.

We may place the set of all @ € P such that w1 =5 and ®2=9 into
1-1 correspondence with itself by reversing the induced orientation of the
subpath consisting of the edges e, e;, e), e), e, and e for each w € P
such that wl =5 and w2 =9. If ® « @' denotes this correspondence, then
Aw) = o') (mod 2) and sgn(w) = —sgn(w'). Therefore, T(-1)"(*) sgn(w) =
-3 (-1 sgn(w), and so 3 (-1)(=) sgn(w) = 0, where each summation is
over all w € P such that 1 =5 and w2 =9.

The next lemma is immediate from Lemma 2 and Theorem 2.

Lemma 3. The c_'s satisfy the difference equation c_=c +c -
n n

n—-1 n~2

C,_3 for n> 4 with the initial conditions c,=c,=-2 and c, =-6.

2 3
We obtain by induction from Lemma 3 and ¢, _, <c, _,<c _, forn>4
ne2 " Cn-3) <c,_q- Thus ¢ <c <0 for n>2. In

fact, solving the difference equation with the initial conditions in Lemma 3

that Ca=Cp_1 ¥ (c

we obtain ¢ =2 - 41(%n) for n> 1. This completes the proof of Theorem 4.
As a final remark the computations above are all valid if the A]. 's are re-

garded as m x m matrices for any m < n,
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