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ABSTRACT.  Let  A,,. . . , A,  be  nX n   matrices over a commutative ring
i k.

R  with identity.  Graph theoretic methods are established to compute the

standard polynomial lA   ,. . ., A A,  It is proved that if  k <2n — 2, and if the

characteristic of R  either is zero or does not divide  4/C/2 tí) — 2, where /

denotes the greatest integer function, then there exist  n X n  skew-symmetric

matrices  A ,, . . ., A ,   such that  lA.A A 4 0.

1. Introduction.   Let A  , . . . , A ,   be  re x re matrices over a commutative

ring  R with identity.  Let  S,   be the symmetric group of degree  ¿.   Define

the standard polynomial  [A ,,..., A ,]  by

[Aj, ..., Ak]=Y,sgnio)A(Tl ■■■ Aak,

where the summation is over all permutations a £ S,.

Amitsur and Levitzki proved algebraically [l] that [A ,, . . . , A,] = 0 if

¿ > 2w.   Their proof is elementary but lengthy.  Swan gave a simpler and

shorter graph theoretic proof of their theorem [8], [9].  Amitsur and Levitzki

also proved that if  k < 2n, then there exist  re x n matrices  A ..... , A,   such

that  [A ..... , A,] 4 0, i.e., their theorem is sharp.  See [l], [7] and [8] for

examples.  It is known [7] that if  ¿ < 2re, then there exist  re x re symmetric

matrices  A ..... , A ,   such that [A ..... , A ,] 4 0.

Kostant proved in [3] that  [A y . . . , A,] = 0  if  k > 2re - 2, where  re is

even, and each of the matrices  A.  is complex skew-symmetric.  In this paper

we prove using graph theoretic methods that if k < 2n — 2, and if the charac-

teristic of R  either equals 0 or does not divide  Al(V2n) — 2, where  / denotes

the greatest integer function, then there exist  re x re skew-symmetric matrices

A.,,.,, Ak such that [A.,..., Afe] 4 0. This solves Conjecture 2 in [7] in

the affirmative.  In particular, for  re even this implies that Kostant's theorem

is sharp.  Kostant's proof is nonelementary and uses cohomology theory. In

[4] we present a graph theoretic proof that  [A ..... , A, ] =0 for  ¿ > 2re - 2
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if each of the matrices  A . is skew-symmetric, and  R  is an integral domain

not of characteristic 2.  This generalization of Kostant's theorem solves

Conjecture 1 in [7] in the affirmative.  The solutions of Conjectures 1 and 2

have been obtained independently by Hutchinson [2] and by Rowen [6].  Our

results in this paper are somewhat stronger for the case when the character-

istic of  R  is larger than 2.  See [2], [5] and [6] for related results.

2. Algebraic preliminaries.  We first state some algebraic properties of

[,...,].  [,...,]  is alternating and multilinear.  [  ,. . . , ]  may be defined

recursively by LA] = A   and

U1,...,Afe]=£(-l)'-1A.U1,...,Â.,...,Ajfe]
7 = 1

k

= X (- l)k~jlA v .... Â., ..., Ak]A.    for k > 1,
;'=l

where the notation A .  means that the matrix  A . is absent.

The following propositions are easily established using the alternating

and multilinear properties of [   , . . . ,  ].  Let A    denote the transpose of the

matrix  A.

Proposition 1.   If A ^, ... , A,   are  nxn matrices, then

(a) [Aj.Aj =lA'k,..., A\].

(b) lA1.Ak]=i-l)k(k~l)/2lAk.Aj].

(c) lAy...,Ak]' =i-l)k^-^2lA\.A'k].

Proposition 2.   // each A .  is an nxn skew-symmetric matrix, then

(a) lA1.A^]'=(-lA^+1>/2[A1.Ak].

(b) [A ..... , A, ]   is symmetric iff k = 0  or 3  (mod 4) and is skew-sym-

metric iff k = 1   or 2  (mod 4).

Proposition 3.   // each A .  is an nxn symmetric matrix, then

(a) [Al.Afe]'=(-l)7^-1)/2[A1.....Afe].

(b) [A j,. . . , A,]   is symmetric iff k s 0  or 1  (mod 4) and is skew-sym-

metric iff k = 2 or 3  (mod A).

Let  e .. be the elementary matrix unit which has a 1 in the (i, /)th posi-

tion and zeros elsewhere.  Let s... 1 < i < i < re, denote the  re x re  skew-
7; '     —        ' —    '

symmetric matrix unit  e .. - e ...   Let  t.., 1 < i < ¡' < re, denote the  nxn

symmetric matrix unit  e.. + (l — S..)e.., where  <5.. is the Kronecker delta.' 77 77    77' 77

Then
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(2.1) e ..e, , = 8., e .„
ij   ht ¡h   ir

s ..s,, = ie .. - e ..)ie, , - e.,) = e . .e, , — e . .e,, - e . e, , + e ..
77   ht 77 77       ht ¡h 77   ht i]   Ih ji   ht ji eih

à;i,e;i - à-,e -, - S.,e, + 8.,e .,
]b   il jl   ib ih   il il  jh-

0 if   7 < h,

| eu if 7 = h,

Sihejl if h <j<l,

S ,e.. it i = l,
tb  77 •

S.,e., + 8.,e .,     if  / > /,
777    jl il    ¡h ' '

ih       "ib^jj

tiithl-ieij+H-d.j)e.^ehl+(l-8hl)elh)

= *ifHl + » - hïeiielb + Ü --di?ejiebl + (1 - S7,)(1 - hveiielh

= 8]heu + (1 - 8j8neih + (1 - 8i)8ihe]l + (l - 5..)(l - 8^)8.^

(2.3)
if ;' < h,

if j = h,

8.hen if h<j<l,

3. Graph theoretic preliminaries.  Let G be a graph having re vertices

f,,..., v    and ¿ edges  e..... , e,.  If t>. and v. are vertices of G, then
177 °17e77 '

an Euler path in  G from  f. to v. is a permutation a> £ S,   tot which there

exists an orientation of  G such that

(a) ewl  starts at v., i.e., v. is the initial vertex of  e

(b) e  ,   ends at f., i.e., v. is the terminal vertex of e   ,, and
cok 11 cok'

(c) the terminal vertex of e   .  is the initial vertex of e   ,,  . ,, for 1 < h < k.
a> » £)(/, + 1) —

If, in addition, G is a digraph, then a unicursal path [8] in  G from v .

to v. is an Euler path in  G from v. to  v. with respect to the given orienta-

tion of G.  Thus if G is a digraph, every unicursal path in G from v. to v.

is also an Euler path in G from v. to v. but not conversely, i.e. we deal

only with the given directions of the edges when considering unicursal paths.

If G is a digraph without loops and tu is an Euler path in G from v . to

v., then some of the edges of G may have directions induced by co opposite

to their given directions.  We refer to the number of such edges by r(<u). Thus
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the number of edges of G which have directions induced by co which are the

same as their given directions is ¿ - r(&>).

Let each A. be some e...   Define a digraph G as follows.  G has  n

vertices v.,..., v  , and G has a directed edge  e. from v,   to  v,   tot each

A . = e... The following theorem is due to Swan [8] and is immediate from

multiplication rule (2.1).

Theorem 1.  The ii, j)th entry in [A,,. .. , A A  is X sgn(fc)), where the

summation is over all unicursal paths &>  in G from v. to v..r '77

Let each A. be some s... Define a digraph G as follows.  G has  re

vertices  v...... v  , and G has a directed edge  e. from v,   to  v. tot each

A . = s, ,.   The next theorem follows immediately from Theorem 1 and multi-

plication rule (2.2).

Theorem 2.  The ii, j)th entry in [A,,..., A,]  is £( — i),'(a' sgn(<u),

where the summation is over all Euler paths co  in G from v. to v..

Let each A . be some  t.,. Define a graph G as follows.  G has n ver-

tices  t7,,..., v  , and  G has an edge  e. from v,   to 17, for each  A . = í,,.
In' &       7 ht j       hi

The next theorem follows immediately from Theorem 1 and multiplication rule

(2.3).

Theorem 3.  The ii, j)th entry in [A.,. .., A A is 2 sgn(<y), where the

summation is over all Euler paths a>  in G from v. to v..r '27

It is easy to give a similar graph theoretic interpretation to [A..... , A,]

when the  A .'s are a mixture of elementary, skew-symmetric and symmetric

matrix units.

4. Main result.  This section establishes

Theorem 4.   If k < 2n — 2, and if the characteristic of R  either equals 0

or does not divide Al(}/2ri) — 2, where  I denotes the greatest integer function,

then there exist  nxn skew-symmetric matrices A ., . . . , A,   such that

[A,,..., A,] 4 0.1 k

By the recursion formula for [A ..... , A A  in §2 it is sufficient to prove

Theorem 4 for the case ¿ = 2re-3, re> 1.  For this case let the matrices

Ay..., Ak be 512, s2y siy s34. s2i.*„_,,„. sn_2n,and let B„ =

[A y ..., Afe],  By direct computation B. = sl2 and B, = -2(en + e22 + e    ).

Hence, Theorem 4 is true for re = 2  or  3.  Figure 1 illustrates a portion of

the digraph G    described preceding Theorem 2 associated with B .
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Figure 1.    G ,  n > 1, has  re  vertices and  2re - 3  edges.

Lemma 1.   If n > 3, then there exists an integer c    such that B    =

c (e-        , +( —l)"     e      ,  A), i.e., B    =c s,        ,   for re  even > 3, are«/ B    =
772,«— 1 72— 1,2 77 77     2,77— 1    ' 77

c Í,        ,   /or re  ofiW > 3.
77   2,77— 1    '

Proof.   Proposition 2 implies that B    is skew-symmetric iff re is even

and is symmetric iff re is odd.  v2  and  t»  _.   are the only vertices of G    of

odd order since  re > 3.  Hence, the only possible Euler paths  co  in  G    ate

from  172  to  t7      .   or from  v      ,   to v2.  Apply Theorem 2.

The first few computed  c  's are  c.=c.= —6, c,-c    = -10  and  c   =

— 14.  For later convenience we set  c~= c^= —2.

This paragraph is not necessary for the proof of the theorem but may be

of interest.  If  E    denotes the number of Euler paths  co  in  G    from  v    to77 r 72 2

v     ,, then E_ = 1, E, = 2, E, = 6, Ec = 16, E. = 44, E, = 120 and E. =
72— 1' 2'3,4'5 '6 '7 8

328.  We set  E    = 0.  Then the number of such Euler paths

(a) with tul = 1   is  E      ,   for  re > 1,
77— 1 '

(b) with tul = 2  is   E for re > 1, and' 77— 1 '

(c) with cul = 5  is  2E     - for re > 2.' 72— 2

(a), (b) and (c) imply that the E 's satisfy the difference equation E =

2E _ j + 2E _ for re > 2 with the initial conditions E = 0 and E2 = 1

whose solution is

En = (v/3/6)((l + V3)"_1 - (1 - v/3)"-1)-

Lemma 2.   Lei  P    denote the set of all Euler paths in G     from v^  to
n ' r 77 ' 2

"„.!•   TÂe" 2(-l)r(W) sgn(cu)  erjivß/s

(a) c      ,   /or re > 3, where the summation is over all a> £ P     such that
72— 1   ' ' 77

tul = 1,

(b) c     . — c      ,   /or re > 4, where the summation is over all co £ Pv    '        77— 2 72— 3    ' ' 77

such that col = 2,

(c) 0 for re > 4, where the summation is over all a> £ P     such that

col = 5.
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Proof of (a).  <u2 = 3  for each cú £ P     such that tul = 1.  Define  /. by
72 1

f ix) = x+ j and /: {2, 4, 5.2n - 3l — ÍI, 2, 3.2re - 5! by/(2)=1

and fix) = x - 2 for 4 < x < 2re - 3. Define  F: |<u e P  Itul = 1¡ -» P      ,  byJ — — 7Z1 77—  I '

co   = F(cu) = / ° co ° f .   F  is a 1-1 correspondence such that r(cu) = rico') + 1

and  sen(eu) = —sen (cu')  for each cú £ P     such that tul = 1.  Therefore, c      ,
, 72 '       77— 1

= 1,i — l) sgn((U ), where the summation is over all co   £ P      .,

= £( — 1)        sgn(tu), where the summation is over all co £ P   such that cul = 1.

Proof of (b).   By direct computation 2(-l)      ' sgn (cu) = 0 = c, - c

where the summation is over all (ú £ P     such that cul = 2.  Hence, we may

assume that  re > 5.  cu2 = 3, A or 7 for each cú £ P     such that cul = 2.  <u3 = 1' 77

and cu4 = 5  for each cu £ P     such that cul = 2  and cu2 = 3.  Define  f :{A, 6,

7,..., 2re-3i — Í1, 2, 3,..., 2re-7i by fiA) = 1  and fix) - * - 4 for

6 < x < 2re - 3.  Define  F: {eu e P  Icul = 2  and cu2 = 3Î —» P      ,   by cu' =— — 77' 77— 2 -^

F(cu) = / ° cú o y      F is a 1-1 correspondence such that Heu) = Heu') + 1  and

sgn (cu) = -sgn (cu )  for each cu £ P    such that cul = 2  and cu2 = 3.  There-

fore, cn_2 ~ 2(-l) sgn(cu'), where the summation is over all cú   £

P      ,, = S( —l)r(      sen(cu), where the summation is over all cu £ P     such
77—2' o i n

that cul = 2 and cu2 = 3.

cu3 = 5, 6 or 9 for each cu £ P     such that  cul = 2  and cu2 = 4.  cu4 = 1,

eu5 = 3 and a>6 = 7 for each u> £ P    such that cul = 2, cu2 = 4 and cu3 = 5.

Define /: \6, 8, 9.In - 3} — {l, 2, 3,..., 2» - 9! by /(6) = 1  and /(x)

= x -6 for 8 <x < 2re - 3. Define  F: {cu 6 Pjcol = 2, cu2 = 4 and cu3 = 5i —

Fn_3  by cu   = F(cu) = / ° eu ° f&.   F  is a 1-1 correspondence such that  Hcu) =

Hcu') + 2 and sgn(cu) = sgn(cu') for each cu £ P    such that cul = 2, cu2 = 4,

and cu3 = 5.  Therefore, cn_ , = S(-l)r(ffl     sgn(cu'), where the summation is

over all cú' £ P      ,, = 2(-l)r    ' sgn(cu), where the summation is over all

cú £ P     such that cul = 2, cu2 = 4 and cu3 = 5.
77 '

If cul = 2, cu2 = 4 and cu3 = 6, then  v,  and t>    are connected by two

subpaths of cu, namely  e     and the subpath consisting of the edges   e_, e ,

e , e    and e      Either exactly two or exactly three of these six edges have

orientations induced by cu  opposite to their given orientations.  We may

place the set of all  cu £ P     such that cul = 2, cu2 = 4  and cu3 = 6 into  1-1

correspondence with itself by interchanging the order of these two subpaths

if exactly 2 of the 6 edges have orientations induced by cu  opposite to their

given orientations, and by interchanging the order of these two subpaths and

reversing their induced orientations if exactly 3 of the 6 edges have orienta-

tions induced by cu  opposite to their given orientations.  If cu <—» cu   denotes

this correspondence, then  i{cú) = rico ) and  sgn (cu) = -sgn (cu ).   Therefore,

£(-l)r(a,) sgn(cu) =-S(-l)r(w) sgn(cu), and so H-lY^ sgn(cu) = 0,
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where each summation is over all cu £ P     such that cul = 2, eu2 = 4 and
72 '

cu3 = 6.

We may place the set of all cu £ P     such that cul = 2, cu2 = 4 and

cu3 = 9 into 1-1 correspondence with itself by reversing the induced orienta-

tion of the cycle consisting of the edges  e , e , e, e    and e.  tot each

at £ P    such that cul = 2, cu2 = 4 and cu3 = 9. If cu «-► cu   denotes this cor-
77 '

respondence, then Hcu) = Hcu ) + 1  (mod 2)  and  sgn(cu) = sgn(cu ). Therefore,

2(-l)'(a,) sgn(cu) = -S(-l)r(£a) sgn(cu), and so  2( -l)r(" > sgn(cu) = 0,

where each summation is over all cu £ P    such that cul = 2, cu2 = 4 and
72 '

cu3=9.

If cul = 2 and cu2 = 7, then there exists  i, A < i < 2re — 7, such that

cu(z + /) eil, 3, 4, 5i for 0 < ; < 3. Define /: {6, 8, 9.2re - 3! -»

{1, 2, 3.2re-9! by /(6) = 1  and fix) = x-6 for 8 < x < 2re - 3. Define

cu' = F(cu)  by oj'h = / ° (úih + 2)  for  I < h < i - 2 and cu'/> = / ° cu(/i + 6)  for

i - 2 < h < 2re - 9.  F: {cu 6 P  Icul = 2 and cu2 = 7! —> P     -  is a 2-1 map— — 721 77— 3 r

such that Hcu) = Hcu ) + 2 and sgn(cu) = — sgn (cu ) for each cú £ P    such

that cul = 2 and cu2 = 7.  Therefore, -2c     2 = -22(-l)'(CJ ' sen(cu'), where72— 3 o »

the summation is over all cu   £ P  _,, = X(-l)r(   ' sgn(cu), where the summa-

tion is over all cu £ P     such that cul = 2  and cu2 = 7.
77

Proof of (c).   By direct computation 2(-l)r^<u' sgn(cu) = 0, where the

summation is over all cu £ P     such that cul = 5.  Hence, we may assume that

re > 5. eu2 = 4, 6 or 9 for each cu £ P    such that cul = 5. cu6 = 7 for each
77

eu £ Pn such that cul = 5 and cu2 = 4. Define / : {6, 8, 9,. .., 2re - 31 —►

il, 2, 3.2re - 9! by fid) = 1  and fix) = x - 6 for 8 < x < 2re - 3.  De-

fine  F: {cu £ P  Icul = 5 and cu2 = A\ —> P     .  by cu' = F(cu) = / ° cu ° /..
72' 72— y        J ' ' 6

F is a-2-1 map such that Hcu) = Hcu ) + 2 and sgn (cu) = sgn(cu') if cu3 = 3,

cu4 = 1 and cu5 = 2, and Hcu) = ri(ú ) + 3 and sgn(cu) = -sgn(cu') if cu3 = 2,

cu4 = 1 and cu5 = 3 for each cu £ P    such that cul = 5 and eu2 = 4. There-
/ 77

fore, 2c  _ , = 2 2( —l)r(       sgn(cu ), where the summation is over all cu' £

P      ,, = E(-l)r(      sgn(cu), where the summation is over all  cu £ P     such
77— 3 ° ' 72

that cul = 5 and cu2 = 4.

If cul = 5 and cu2 = 6, then there exists  i, A < i < 2re - 7, such that

ûAi + f) £ 11, 2, 3, 4! for 0 < ; < 3. Define /: ¡7, 8, 9,..., 2re - 3i — {l, 2,

3,. .. , 2re - 91 by fix) = x - 6.  Define cu' = F(cu)  by co'h = f ° (úih + 2)  for

1 < h < i - 2 and cú'h = / ° (úih + 6) fot  i - 2 < h < 2re - 9.  F: {cu £ P  |cul =5

and cu2 = 6! —> P      ,  is a 2-1 map.  If cu/ = 2, then Hcu) = r(cú') + 2 and

sgn(cu) = -sgn(cu').  If cuz = 3, then  Hcu) = Hcu') + 1   and  sgn(cu) = sgn(cu').

If cúí = 4 and eu(z' + l) = 2, then rioj) = Hcu') + 3 and sgn(cu) = sgn(cu').

If cu/ = 4 and cu(í + l) = 3, then Hcu) = Hcu ) + 2 and sgn (cu) = -sgn (cu').
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Thus, (-l)r(cü) sgn(cu) = -i-lY{™"> sgn(cu') for each cu £ Pn such that

cul = 5  and cu2 = 6.  Therefore, -2c = -2S( - l)rt"     sgn (cu'), where the

summation is over all cu   £ P   _,, = S( —l)r(   ' sgn(cu), where the summation

is over all cú £ P    such that cul = 5 and cu2 = 6.
n

We may place the set of all cú £ P    such that cul = 5 and cu2 = 9 into

1-1  correspondence with itself by reversing the induced orientation of the

subpath consisting of the edges   e , e , e , e , e,  and  e,  for each cu £ P

such that  cul = 5  and cu2 = 9.  If cu *-* cu    denotes this correspondence, then

Hcu) = Hcu') (mod 2) and sgn(cu) = -sgn(cu').  Therefore, £(-l)r('1)' sgn(cu) =

— £( — l)r(-œ> sgn (cu), and so S( — lY^' sgn(cu) = 0, where each summation is

over all cu £ P     such that cul = 5  and cu2 = 9.
n

The next lemma is immediate from Lemma 2 and Theorem 2.

Lemma 3.   The c  's satisfy the difference equation c    = c      , + c     , —
72 ' J " ^ 72 72- 1 77- 2

c      ,   for re > 4 with the initial conditions  c, = c, =—2  and c , = — 6.
77- 3  ' 2        3 4

We obtain by induction from Lemma 3 and  c      , < c      -, < c      ,  fot n > A' 72- 1   —      77- 2   —      72- 3

that  c    = c      ,+(c      ,-c      ,) < c      ,.  Thus  c    < c      . < 0 for re > 2.  In
72 72—1 72—2 72—3      —      72—1 77—72—1

fact, solving the difference equation with the initial conditions in Lemma 3

we obtain c    = 2 - AliV2n) tot re > 1.  This completes the proof of Theorem 4.

As a final remark the computations above are all valid if the A . 's are re-

garded as  7?2 x ?72 matrices for any  m < n.
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