APPLICATIONS OF GRAPH THEORY TO MATRIX THEORY

FRANK W. OWENS

ABSTRACT. Let A_1, \ldots, A_k be $n \times n$ matrices over a commutative ring R with identity. Graph theoretic methods are established to compute the standard polynomial $\begin{bmatrix} A_1, \ldots, A_k \end{bmatrix}$. It is proved that if k < 2n - 2, and if the characteristic of R either is zero or does not divide $4I(\frac{1}{2}n) - 2$, where I denotes the greatest integer function, then there exist $n \times n$ skew-symmetric matrices A_1, \ldots, A_k such that $\begin{bmatrix} A_1, \ldots, A_k \end{bmatrix} \neq 0$.

1. Introduction. Let A_1, \ldots, A_k be $n \times n$ matrices over a commutative ring R with identity. Let S_k be the symmetric group of degree k. Define the standard polynomial $[A_1, \ldots, A_k]$ by

$$[A_1, \ldots, A_k] = \sum \operatorname{sgn}(\sigma) A_{\sigma_1} \cdots A_{\sigma_k}$$

where the summation is over all permutations $\sigma \in S_{\pmb{i}}$.

Amitsur and Levitzki proved algebraically [1] that $[A_1,\ldots,A_k]=0$ if $k\geq 2n$. Their proof is elementary but lengthy. Swan gave a simpler and shorter graph theoretic proof of their theorem [8], [9]. Amitsur and Levitzki also proved that if k<2n, then there exist $n\times n$ matrices A_1,\ldots,A_k such that $[A_1,\ldots,A_k]\neq 0$, i.e., their theorem is sharp. See [1], [7] and [8] for examples. It is known [7] that if k<2n, then there exist $n\times n$ symmetric matrices A_1,\ldots,A_k such that $[A_1,\ldots,A_k]\neq 0$.

Kostant proved in [3] that $[A_1, \ldots, A_k] = 0$ if $k \ge 2n - 2$, where n is even, and each of the matrices A_j is complex skew-symmetric. In this paper we prove using graph theoretic methods that if k < 2n - 2, and if the characteristic of R either equals 0 or does not divide $4I(\frac{1}{2}n) - 2$, where I denotes the greatest integer function, then there exist $n \times n$ skew-symmetric matrices A_1, \ldots, A_k such that $[A_1, \ldots, A_k] \ne 0$. This solves Conjecture 2 in [7] in the affirmative. In particular, for n even this implies that Kostant's theorem is sharp. Kostant's proof is nonelementary and uses cohomology theory. In [4] we present a graph theoretic proof that $[A_1, \ldots, A_k] = 0$ for $k \ge 2n - 2$

Presented to the Society, January 28, 1973 under the title *Graph theory and identities on matrices*; received by the editors August 29, 1973 and, in revised form, May 28, 1974.

AMS (MOS) subject classifications (1970). Primary 05B20, 05C20, 16A28, 16A38; Secondary 15A24.

Key words and phrases. Standard polynomial, digraph, Euler path, skew-symmetric.

Copyright © 1975. American Mathematical Society

if each of the matrices A_j is skew-symmetric, and R is an integral domain not of characteristic 2. This generalization of Kostant's theorem solves Conjecture 1 in [7] in the affirmative. The solutions of Conjectures 1 and 2 have been obtained independently by Hutchinson [2] and by Rowen [6]. Our results in this paper are somewhat stronger for the case when the characteristic of R is larger than 2. See [2], [5] and [6] for related results.

$$[A_1, \dots, A_k] = \sum_{j=1}^k (-1)^{j-1} A_j [A_1, \dots, \hat{A}_j, \dots, A_k]$$

$$= \sum_{j=1}^k (-1)^{k-j} [A_1, \dots, \hat{A}_j, \dots, A_k] A_j \quad \text{for } k > 1,$$

where the notation \hat{A}_i means that the matrix A_i is absent.

The following propositions are easily established using the alternating and multilinear properties of [, ...,]. Let A' denote the transpose of the matrix A.

Proposition 1. If A_1, \ldots, A_k are $n \times n$ matrices, then

- (a) $[A_1, \ldots, A_k]' = [A'_k, \ldots, A'_1].$
- (b) $[A_1, \ldots, A_k] = (-1)^{k(k-1)/2} [A_k, \ldots, A_1].$
- (c) $[A_1, \ldots, A_k]' = (-1)^{k(k-1)/2} [A'_1, \ldots, A'_k].$

Proposition 2. If each A_i is an $n \times n$ skew-symmetric matrix, then

- (a) $[A_1, \ldots, A_k]' = (-1)^{k(k+1)/2} [A_1, \ldots, A_k].$
- (b) $[A_1, \ldots, A_k]$ is symmetric iff $k \equiv 0$ or 3 (mod 4) and is skew-symmetric iff $k \equiv 1$ or 2 (mod 4).

Proposition 3. If each A, is an $n \times n$ symmetric matrix, then

- (a) $[A_1, \ldots, A_k]' = (-1)^{k(k-1)/2} [A_1, \ldots, A_k].$
- (b) $[A_1, \ldots, A_k]$ is symmetric iff $k \equiv 0$ or 1 (mod 4) and is skew-symmetric iff $k \equiv 2$ or 3 (mod 4).

Let e_{ij} be the elementary matrix unit which has a 1 in the (i, j)th position and zeros elsewhere. Let s_{ij} , $1 \le i < j \le n$, denote the $n \times n$ skewsymmetric matrix unit $e_{ij} - e_{ji}$. Let t_{ij} , $1 \le i \le j \le n$, denote the $n \times n$ symmetric matrix unit $e_{ij} + (1 - \delta_{ij})e_{ji}$, where δ_{ij} is the Kronecker delta. Then

$$(2.1) e_{ij}e_{hl} = \delta_{jh}e_{il},$$

$$s_{ij}s_{hl} = (e_{ij} - e_{ji})(e_{hl} - e_{lh}) = e_{ij}e_{hl} - e_{ij}e_{lh} - e_{ji}e_{hl} + e_{ji}e_{lh}$$

$$= \delta_{jh}e_{il} - \delta_{jl}e_{ih} - \delta_{ih}e_{jl} + \delta_{il}e_{jh}.$$

$$(2.2) = \begin{cases} 0 & \text{if } j < h, \\ e_{il} & \text{if } j = h, \\ -\delta_{ih}e_{jl} & \text{if } h < j < l, \\ -e_{ih} - \delta_{ih}e_{jj} & \text{if } j = l, \\ -\delta_{ih}e_{il} + \delta_{il}e_{ih} & \text{if } j > l, \end{cases}$$

$$\begin{aligned} t_{ij}t_{hl} &= (e_{ij} + (1 - \delta_{ij})e_{ji})(e_{hl} + (1 - \delta_{hl})e_{lh}) \\ &= e_{ij}e_{hl} + (1 - \delta_{hl})e_{ij}e_{lh} + (1 - \delta_{ij})e_{ji}e_{hl} + (1 - \delta_{ij})(1 - \delta_{hl})e_{ji}e_{lh} \\ &= \delta_{jh}e_{il} + (1 - \delta_{hl})\delta_{jl}e_{ih} + (1 - \delta_{ij})\delta_{ih}e_{jl} + (1 - \delta_{ij})(1 - \delta_{hl})\delta_{il}e_{jh} \\ \end{aligned}$$

$$(2.3) \begin{cases} 0 & \text{if } j < b, \\ \text{if } j = b, \\ \text{if } b < j < l, \\ \delta_{ih}e_{jl} & \text{if } b < j < l, \\ \delta_{jh}e_{ij} + (1 - \delta_{hj})e_{ih} + (1 - \delta_{ij})\delta_{ih}e_{jj} & \text{if } j = l, \\ \delta_{ih}e_{jl} + (1 - \delta_{hl})\delta_{il}e_{jh} & \text{if } j > l. \end{aligned}$$

- 3. Graph theoretic preliminaries. Let G be a graph having n vertices v_1, \ldots, v_n and k edges e_1, \ldots, e_k . If v_i and v_j are vertices of G, then an Euler path in G from v_i to v_j is a permutation $\omega \in S_k$ for which there exists an orientation of G such that
 - (a) $e_{\omega 1}$ starts at v_i , i.e., v_i is the initial vertex of $e_{\omega 1}$,
 - (b) $e_{\omega k}$ ends at v_i , i.e., v_i is the terminal vertex of $e_{\omega k}$, and
 - (c) the terminal vertex of $e_{\omega h}$ is the initial vertex of $e_{\omega (h+1)}$ for $1 \le h < k$.

If, in addition, G is a digraph, then a unicursal path [8] in G from v_i to v_j is an Euler path in G from v_i to v_j with respect to the given orientation of G. Thus if G is a digraph, every unicursal path in G from v_i to v_j is also an Euler path in G from v_i to v_j but not conversely, i.e. we deal only with the given directions of the edges when considering unicursal paths.

If G is a digraph without loops and ω is an Euler path in G from v_i to v_j , then some of the edges of G may have directions induced by ω opposite to their given directions. We refer to the number of such edges by $r(\omega)$. Thus

the number of edges of G which have directions induced by ω which are the same as their given directions is $k - r(\omega)$.

Let each A_j be some e_{hl} . Define a digraph G as follows. G has n vertices v_1, \ldots, v_n , and G has a directed edge e_j from v_h to v_l for each $A_j = e_{hl}$. The following theorem is due to Swan [8] and is immediate from multiplication rule (2.1).

Theorem 1. The (i, j)th entry in $[A_1, \ldots, A_k]$ is $\Sigma \operatorname{sgn}(\omega)$, where the summation is over all unicursal paths ω in G from v_i to v_i .

Let each A_j be some s_{hl} . Define a digraph G as follows. G has n vertices v_1, \ldots, v_n , and G has a directed edge e_j from v_h to v_l for each $A_j = s_{hl}$. The next theorem follows immediately from Theorem 1 and multiplication rule (2.2).

Theorem 2. The (i, j)th entry in $[A_1, \ldots, A_k]$ is $\Sigma(-1)^{r(\omega)} \operatorname{sgn}(\omega)$, where the summation is over all Euler paths ω in G from v_i to v_i .

Let each A_j be some t_{hl} . Define a graph G as follows. G has n vertices v_1, \ldots, v_n , and G has an edge e_j from v_h to v_l for each $A_j = t_{hl}$. The next theorem follows immediately from Theorem 1 and multiplication rule (2.3).

Theorem 3. The (i, j)th entry in $[A_1, \ldots, A_k]$ is $\Sigma \operatorname{sgn}(\omega)$, where the summation is over all Euler paths ω in G from v_i to v_i .

It is easy to give a similar graph theoretic interpretation to $[A_1, \ldots, A_k]$ when the A_j 's are a mixture of elementary, skew-symmetric and symmetric matrix units.

4. Main result. This section establishes

Theorem 4. If k < 2n - 2, and if the characteristic of R either equals 0 or does not divide $4I(\frac{1}{2}n) - 2$, where I denotes the greatest integer function, then there exist $n \times n$ skew-symmetric matrices A_1, \ldots, A_k such that $[A_1, \ldots, A_k] \neq 0$.

By the recursion formula for $[A_1,\ldots,A_k]$ in §2 it is sufficient to prove Theorem 4 for the case k=2n-3, n>1. For this case let the matrices A_1,\ldots,A_k be $s_{12},s_{23},s_{13},s_{34},s_{24},\ldots,s_{n-1,n},s_{n-2,n}$, and let $B_n=[A_1,\ldots,A_k]$. By direct computation $B_2=s_{12}$ and $B_3=-2(e_{11}+e_{22}+e_{33})$. Hence, Theorem 4 is true for n=2 or 3. Figure 1 illustrates a portion of the digraph G_n described preceding Theorem 2 associated with B_n .

Figure 1. G_n , n > 1, has n vertices and 2n - 3 edges.

Lemma 1. If n > 3, then there exists an integer c_n such that $B_n = c_n(e_{2,n-1} + (-1)^{n-1}e_{n-1,2})$, i.e., $B_n = c_n s_{2,n-1}$ for n even > 3, and $B_n = c_n t_{2,n-1}$ for n odd > 3.

Proof. Proposition 2 implies that B_n is skew-symmetric iff n is even and is symmetric iff n is odd. v_2 and v_{n-1} are the only vertices of G_n of odd order since n > 3. Hence, the only possible Euler paths ω in G_n are from v_2 to v_{n-1} or from v_{n-1} to v_2 . Apply Theorem 2.

The first few computed c_n 's are $c_4 = c_5 = -6$, $c_6 = c_7 = -10$ and $c_8 = -14$. For later convenience we set $c_2 = c_3 = -2$.

This paragraph is not necessary for the proof of the theorem but may be of interest. If E_n denotes the number of Euler paths ω in G_n from v_2 to v_{n-1} , then $E_2=1$, $E_3=2$, $E_4=6$, $E_5=16$, $E_6=44$, $E_7=120$ and $E_8=328$. We set $E_1=0$. Then the number of such Euler paths

- (a) with $\omega 1 = 1$ is E_{n-1} for n > 1,
- (b) with $\omega 1 = 2$ is E_{n-1} for n > 1, and
- (c) with $\omega 1 = 5$ is $2E_{n-2}$ for n > 2.
- (a), (b) and (c) imply that the E_n 's satisfy the difference equation $E_n=2E_{n-1}+2E_{n-2}$ for n>2 with the initial conditions $E_1=0$ and $E_2=1$ whose solution is

$$E_n = (\sqrt{3}/6)((1+\sqrt{3})^{n-1} - (1-\sqrt{3})^{n-1}).$$

Lemma 2. Let P_n denote the set of all Euler paths in G_n from v_2 to v_{n-1} . Then $\Sigma (-1)^{r(\omega)} \operatorname{sgn}(\omega)$ equals

- (a) c_{n-1} for n > 3, where the summation is over all $\omega \in P_n$ such that $\omega 1 = 1$,
- (b) $c_{n-2}-c_{n-3}$ for n>4, where the summation is over all $\omega\in P_n$ such that $\omega 1=2$,
- (c) 0 for n > 4, where the summation is over all $\omega \in P_n$ such that $\omega 1 = 5$.

Proof of (a). $\omega 2 = 3$ for each $\omega \in P_n$ such that $\omega 1 = 1$. Define f_j by $f_j(x) = x + j$ and $f: \{2, 4, 5, \ldots, 2n - 3\} \rightarrow \{1, 2, 3, \ldots, 2n - 5\}$ by f(2) = 1 and f(x) = x - 2 for $4 \le x \le 2n - 3$. Define $F: \{\omega \in P_n | \omega 1 = 1\} \rightarrow P_{n-1}$ by $\omega' = F(\omega) = f \circ \omega \circ f_2$. F is a 1-1 correspondence such that $r(\omega) = r(\omega') + 1$ and $\operatorname{sgn}(\omega) = -\operatorname{sgn}(\omega')$ for each $\omega \in P_n$ such that $\omega 1 = 1$. Therefore, $c_{n-1} = \sum (-1)^{r(\omega')} \operatorname{sgn}(\omega')$, where the summation is over all $\omega' \in P_{n-1}$, $= \sum (-1)^{r(\omega)} \operatorname{sgn}(\omega)$, where the summation is over all $\omega \in P_n$ such that $\omega 1 = 1$.

Proof of (b). By direct computation $\Sigma(-1)^{r(\omega)} \operatorname{sgn}(\omega) = 0 = c_3 - c_2$, where the summation is over all $\omega \in P_5$ such that $\omega 1 = 2$. Hence, we may assume that n > 5. $\omega 2 = 3$, 4 or 7 for each $\omega \in P_n$ such that $\omega 1 = 2$. $\omega 3 = 1$ and $\omega 4 = 5$ for each $\omega \in P_n$ such that $\omega 1 = 2$ and $\omega 2 = 3$. Define $f: \{4, 6, 7, \ldots, 2n-3\} \longrightarrow \{1, 2, 3, \ldots, 2n-7\}$ by f(4)=1 and f(x)=x-4 for $6 \le x \le 2n-3$. Define $F: \{\omega \in P_n | \omega 1 = 2 \text{ and } \omega 2 = 3\} \longrightarrow P_{n-2}$ by $\omega' = F(\omega) = f \circ \omega \circ f_4$. F is a 1-1 correspondence such that $r(\omega) = r(\omega') + 1$ and $\operatorname{sgn}(\omega) = -\operatorname{sgn}(\omega')$ for each $\omega \in P_n$ such that $\omega 1 = 2$ and $\omega 2 = 3$. Therefore, $c_{n-2} = \Sigma(-1)^{r(\omega')} \operatorname{sgn}(\omega)$, where the summation is over all $\omega' \in P_{n-2}$, $= \Sigma(-1)^{r(\omega)} \operatorname{sgn}(\omega)$, where the summation is over all $\omega \in P_n$ such that $\omega 1 = 2$ and $\omega 2 = 3$.

If $\omega 1=2$, $\omega 2=4$ and $\omega 3=6$, then v_5 and v_6 are connected by two subpaths of ω , namely e_8 and the subpath consisting of the edges e_7 , e_3 , e_1 , e_5 and e_9 . Either exactly two or exactly three of these six edges have orientations induced by ω opposite to their given orientations. We may place the set of all $\omega \in P_n$ such that $\omega 1=2$, $\omega 2=4$ and $\omega 3=6$ into 1-1 correspondence with itself by interchanging the order of these two subpaths if exactly 2 of the 6 edges have orientations induced by ω opposite to their given orientations, and by interchanging the order of these two subpaths and reversing their induced orientations if exactly 3 of the 6 edges have orientations induced by ω opposite to their given orientations. If $\omega \leftrightarrow \omega'$ denotes this correspondence, then $r(\omega) = r(\omega')$ and $sgn(\omega) = -sgn(\omega')$. Therefore, $\Sigma(-1)^{r(\omega)} sgn(\omega) = -\Sigma(-1)^{r(\omega)} sgn(\omega)$, and so $\Sigma(-1)^{r(\omega)} sgn(\omega) = 0$,

where each summation is over all $\omega \in P_n$ such that $\omega 1 = 2$, $\omega 2 = 4$ and $\omega 3 = 6$.

We may place the set of all $\omega \in P_n$ such that $\omega 1 = 2$, $\omega 2 = 4$ and $\omega 3 = 9$ into 1-1 correspondence with itself by reversing the induced orientation of the cycle consisting of the edges e_7 , e_3 , e_1 , e_5 and e_6 for each $\omega \in P_n$ such that $\omega 1 = 2$, $\omega 2 = 4$ and $\omega 3 = 9$. If $\omega \leftrightarrow \omega'$ denotes this correspondence, then $r(\omega) \equiv r(\omega') + 1 \pmod{2}$ and $\operatorname{sgn}(\omega) = \operatorname{sgn}(\omega')$. Therefore, $\Sigma(-1)^{r(\omega)} \operatorname{sgn}(\omega) = -\Sigma(-1)^{r(\omega)} \operatorname{sgn}(\omega)$, and so $\Sigma(-1)^{r(\omega)} \operatorname{sgn}(\omega) = 0$, where each summation is over all $\omega \in P_n$ such that $\omega 1 = 2$, $\omega 2 = 4$ and $\omega 3 = 9$.

If $\omega 1=2$ and $\omega 2=7$, then there exists $i,4\leq i\leq 2n-7$, such that $\omega(i+j)\in\{1,3,4,5\}$ for $0\leq j\leq 3$. Define $f\colon\{6,8,9,\ldots,2n-3\}\to\{1,2,3,\ldots,2n-9\}$ by f(6)=1 and f(x)=x-6 for $8\leq x\leq 2n-3$. Define $\omega'=F(\omega)$ by $\omega'h=f\circ\omega(h+2)$ for $1\leq h< i-2$ and $\omega'h=f\circ\omega(h+6)$ for $i-2\leq h\leq 2n-9$. $F\colon\{\omega\in P_n|\omega 1=2$ and $\omega 2=7\}\to P_{n-3}$ is a 2-1 map such that $r(\omega)=r(\omega')+2$ and $sgn(\omega)=-sgn(\omega')$ for each $\omega\in P_n$ such that $\omega 1=2$ and $\omega 2=7$. Therefore, $-2c_{n-3}=-2\Sigma(-1)^{r(\omega')}sgn(\omega')$, where the summation is over all $\omega'\in P_{n-3}$, $=\Sigma(-1)^{r(\omega)}sgn(\omega)$, where the summation is over all $\omega\in P_n$ such that $\omega 1=2$ and $\omega 2=7$.

Proof of (c). By direct computation $\Sigma(-1)^{r(\omega)} \operatorname{sgn}(\omega) = 0$, where the summation is over all $\omega \in P_5$ such that $\omega 1 = 5$. Hence, we may assume that n > 5. $\omega 2 = 4$, 6 or 9 for each $\omega \in P_n$ such that $\omega 1 = 5$. $\omega 6 = 7$ for each $\omega \in P_n$ such that $\omega 1 = 5$ and $\omega 2 = 4$. Define $f: \{6, 8, 9, \ldots, 2n-3\} \to \{1, 2, 3, \ldots, 2n-9\}$ by f(6) = 1 and f(x) = x-6 for $8 \le x \le 2n-3$. Define $F: \{\omega \in P_n | \omega 1 = 5 \text{ and } \omega 2 = 4\} \to P_{n-3}$ by $\omega' = F(\omega) = f \circ \omega \circ f_6$. F is a 2-1 map such that $r(\omega) = r(\omega') + 2$ and $\operatorname{sgn}(\omega) = \operatorname{sgn}(\omega')$ if $\omega 3 = 3$, $\omega 4 = 1$ and $\omega 5 = 2$, and $r(\omega) = r(\omega') + 3$ and $\operatorname{sgn}(\omega) = -\operatorname{sgn}(\omega')$ if $\omega 3 = 2$, $\omega 4 = 1$ and $\omega 5 = 3$ for each $\omega \in P_n$ such that $\omega 1 = 5$ and $\omega 2 = 4$. Therefore, $2c_{n-3} = 2\sum (-1)^{r(\omega')} \operatorname{sgn}(\omega')$, where the summation is over all $\omega' \in P_{n-3}$, $= \sum (-1)^{r(\omega)} \operatorname{sgn}(\omega)$, where the summation is over all $\omega \in P_n$ such that $\omega 1 = 5$ and $\omega 2 = 4$.

If $\omega 1 = 5$ and $\omega 2 = 6$, then there exists i, $4 \le i \le 2n - 7$, such that $\omega(i+j) \in \{1, 2, 3, 4\}$ for $0 \le j \le 3$. Define $f: \{7, 8, 9, \ldots, 2n - 3\} \rightarrow \{1, 2, 3, \ldots, 2n - 9\}$ by f(x) = x - 6. Define $\omega' = F(\omega)$ by $\omega' h = f \circ \omega(h+2)$ for $1 \le h < i - 2$ and $\omega' h = f \circ \omega(h+6)$ for $i - 2 \le h \le 2n - 9$. $F: \{\omega \in P_n | \omega 1 = 5 \text{ and } \omega 2 = 6\} \rightarrow P_{n-3}$ is a 2-1 map. If $\omega i = 2$, then $r(\omega) = r(\omega') + 2$ and $sgn(\omega) = -sgn(\omega')$. If $\omega i = 3$, then $r(\omega) = r(\omega') + 3$ and $sgn(\omega) = sgn(\omega')$. If $\omega i = 4$ and $\omega(i+1) = 2$, then $r(\omega) = r(\omega') + 3$ and $sgn(\omega) = -sgn(\omega')$. If $\omega i = 4$ and $\omega(i+1) = 3$, then $\omega(i+1$

Thus, $(-1)^{r(\omega)} \operatorname{sgn}(\omega) = -(-1)^{r(\omega')} \operatorname{sgn}(\omega')$ for each $\omega \in P_n$ such that $\omega 1 = 5$ and $\omega 2 = 6$. Therefore, $-2c_{n-3} = -2\sum (-1)^{r(\omega')} \operatorname{sgn}(\omega')$, where the summation is over all $\omega' \in P_{n-3}$, $= \sum (-1)^{r(\omega)} \operatorname{sgn}(\omega)$, where the summation is over all $\omega \in P_n$ such that $\omega 1 = 5$ and $\omega 2 = 6$.

We may place the set of all $\omega \in P_n$ such that $\omega 1 = 5$ and $\omega 2 = 9$ into 1-1 correspondence with itself by reversing the induced orientation of the subpath consisting of the edges e_7 , e_3 , e_1 , e_2 , e_4 and e_6 for each $\omega \in P_n$ such that $\omega 1 = 5$ and $\omega 2 = 9$. If $\omega \leftrightarrow \omega'$ denotes this correspondence, then $r(\omega) \equiv r(\omega') \pmod{2}$ and $\operatorname{sgn}(\omega) = -\operatorname{sgn}(\omega')$. Therefore, $\sum (-1)^{r(\omega)} \operatorname{sgn}(\omega) = -\sum (-1)^{r(\omega)} \operatorname{sgn}(\omega)$, and so $\sum (-1)^{r(\omega)} \operatorname{sgn}(\omega) = 0$, where each summation is over all $\omega \in P_n$ such that $\omega 1 = 5$ and $\omega 2 = 9$.

The next lemma is immediate from Lemma 2 and Theorem 2.

Lemma 3. The c_n 's satisfy the difference equation $c_n = c_{n-1} + c_{n-2} - c_{n-3}$ for n > 4 with the initial conditions $c_2 = c_3 = -2$ and $c_4 = -6$.

We obtain by induction from Lemma 3 and $c_{n-1} \le c_{n-2} \le c_{n-3}$ for n > 4 that $c_n = c_{n-1} + (c_{n-2} - c_{n-3}) \le c_{n-1}$. Thus $c_n \le c_{n-1} < 0$ for n > 2. In fact, solving the difference equation with the initial conditions in Lemma 3 we obtain $c_n = 2 - 4l(\frac{1}{2}n)$ for n > 1. This completes the proof of Theorem 4. As a final remark the computations above are all valid if the A_j 's are regarded as $m \times m$ matrices for any m < n.

REFERENCES

- 1. S. A. Amitsur and J. Levitzki, Minimal identities for algebras, Proc. Amer. Math. Soc. 1 (1950), 449-463. MR 12, 155.
 - 2. Joan P. Hutchinson, Doctoral Thesis, University of Pennsylvania, 1973.
- 3. Bertram Kostant, A theorem of Frobenius, a theorem of Amitsur-Levitzki and cohomology theory, J. Math. Mech. 7 (1958), 237-264. MR 19, 1153.
- 4. Frank W. Owens, A graph theoretic generalization of a theorem by Kostant (to appear).
- 5. ——, Matrices with zero diagonal, Notices Amer. Math. Soc. 20 (1973), A-7 and A-548. Abstract 73T-A25.
- 6. Louis H. Rowen, Standard polynomials in matrix algebras, Trans. Amer. Math. Soc. 190 (1974), 253-284.
- 7. Kirby C. Smith and Hillel J. Kumin, *Identities on matrices*, Amer. Math. Monthly 79 (1972), 157-158.
- 8. Richard G. Swan, An application of graph theory to algebra, Proc. Amer. Math. Soc. 14 (1963), 367-373. MR 26 #6956.
- 9. ——, Correction to "An application of graph theory to algebra", Proc. Amer. Math. Soc. 21 (1969), 379-380. MR 41 #101.

MATHEMATICAL SCIENCES DEPARTMENT, BALL STATE UNIVERSITY, MUNCIE, IN-DIANA 47306