A CATEGORY THEOREM FOR TSUJI FUNCTIONS

PETER COLWELL

ABSTRACT. If H denotes the functions analytic in the open unit disk with the topology of uniform convergence on compact subsets, both the Tsuji functions in H and the functions in H with nonempty Tsuji sets comprise sets of first category in H. A question is posed about the category of a class of functions containing the Tsuji functions.

1. Introduction. Let $D=\{|z|<1\}$, $C=\{|z|<1\}$, and H be the collection of functions analytic in D with the topology of uniform convergence on compact subsets of D. For each $f \in H$ and $z \in D$ let $f^*(z)=|f'(z)|/(1+|f(z)|^2)$, the spherical derivative of f at z. For each f, 0 < f, and each $f \in H$, we let $L(f, f) = \int_0^{2\pi} f f^*(re^{i\phi}) d\phi$. If $\lim\sup_{r \to 1^-} L(f, r) < \infty$, f is called a Tsuji function. (First introduced in [4], the Tsuji functions have since been extensively studied [1], [2], [3].)

If, for each $\alpha \in D$, we let $\phi_{\alpha}(z) = (z - \alpha)/(1 - \overline{\alpha}z)$, the Tsuji set of $f \in H$ is the set of points $\alpha \in H$ for which $f \circ \phi_{\alpha}$ is a Tsuji function. Tsuji sets were defined in [2], and they have not yet been characterized. In this note we prove the following

Theorem. The collection of functions in H which have a nonempty Tsuji set is of first category in H.

This result also shows that the Tsuji functions in H are of first category in H, which strengthens a result proved by F. Bagemihl [1].

2. Proof of the Theorem. Letting \mathcal{T} be the collection of functions in H having a nonempty Tsuji set, we will show that \mathcal{T} is a countable union of sets which are closed and nowhere dense in H. If $f \in \mathcal{T}$, then for some $\alpha \in D$, x > 0, and $y \in (0, 1)$, $L(f \circ \phi_{\alpha}, r) \leq x$ for all $r \in (y, 1)$. For each triple (n, m, k) of positive integers let T(n, m, k) be the set of functions in H for which there exists $\alpha \in D$, $|\alpha| \leq 1 - 1/n$, such that $L(f \circ \phi_{\alpha}, r) \leq m$ for all $r \in (1 - 1/(k + 1), 1)$. It is clear that $\mathcal{T} = \bigcup_{(n, m, k)} T(n, m, k)$, the

Received by the editors April 23, 1974 and, in revised form, June 10, 1974. AMS (MOS) subject classifications (1970). Primary 30A78.

Copyright © 1975, American Mathematical Society

union being taken over the triples described.

To prove that each T(n, m, k) is closed in H, we first state a preparatory lemma.

Lemma 1. Let $\{\alpha_j^i\}_{j=1}^{\infty}$ be a sequence in D with $\alpha_j \to \alpha \in D$. Let $\phi(z) = (z - \alpha)/(1 - \overline{\alpha}z)$, and for each j, $\phi_j(z) = (z - \alpha_j)/(1 - \overline{\alpha}_j z)$. For a sequence $\{f_j\}_{j=1}^{\infty} \subset H \text{ with } f_j \to f \text{ in } H$:

- (i) $\phi_i \rightarrow \phi$ in H,
- (ii) $f_j \circ \phi_j \to f \circ \phi$ in H,
- (iii) $\{(f_i \circ \phi_j)^*\}_1^{\infty}$ converges to $(f \circ \phi)^*$ uniformly on compact subsets of D,
- (iv) for each $r \in (0, 1)$, $L(f, \circ \phi_i, r) \rightarrow L(f \circ \phi, r)$.

Lemma 2. Each T(n, m, k) is closed in H.

Proof. Let $\{f_j\}$ be a sequence in T(n, m, k) with $f_j \to f$ in H. For each f there is a point $\alpha_j \in D$, $|\alpha_j| \le 1 - 1/n$, such that $L(f_j \circ \phi_j, \tau) \le m$ when $f \in (1 - 1/(k + 1), 1)$. We may suppose $\alpha_j \to \alpha$, where $|\alpha| \le 1 - 1/n$, and let $\phi(z) = (z - \alpha)/(1 - \overline{\alpha}z)$. Lemma 1(iv) shows that $L(f \circ \phi, \tau) \le m$ for each $f \in (1 - 1/(k + 1), 1)$, so that $f \in T(n, m, k)$.

Lemma 3. Each T(n, m, k) is nowhere dense in H.

Proof. For an arbitrary $f \in T(n, m, k)$ we shall show there exists a sequence in H - T(n, m, k) which converges in H to f. Since T(n, m, k) is closed, this will show it is nowhere dense in H.

For some $\alpha \in D$, $|\alpha| \le 1 - 1/n$, $L(f \circ \phi_{\alpha}, r) \le m$ for all $r \in (1 - 1/(k + 1), 1)$. For each positive integer q let S_q be the qth partial sum of the Maclaurin's series for f.

Given q, let p(q) be a positive integer, and define $g_q(z) = S_q(z) + z^{p(q)}$. As long as $\{p(q)\}_{q=1}^{\infty}$ is increasing, $g_q \to f$ in H. If p(q) is sufficiently large, on C both $|g_q'| > (q + p(q))/2$ and $|g_q| \le |S_q| + 1$. Thus we may take $p(q) \in (0, 1)$ so that every Jordan curve in the annulus p(q) < |z| < 1 whose interior contains 0 is mapped by g_q onto a closed curve of spherical length at least p(q). If p(q) is sufficiently large and p(q) is near enough to 1, we will have $p(q) = \frac{1}{2} \left(\frac{1}{2} \right) \left($

With suitable choice of the sequence $\{p(q)\}_{q=1}^{\infty}$, the sequence $\{g_q\}_{q=1}^{\infty}$ lies in H-T(n, m, k) and converges to f in H.

3. In his paper on Tsuji functions [3], W. K. Hayman introduces a larger related class of functions. A function $f \in H$ lies in class T_2 if

there exists a sequence $\{J_n\}_1^{\infty}$ of Jordan curves in D such that: (i) $J_n \subset \inf J_{n+1}$; (ii) $\min_{J_n} |z| \to 1$ as $n \to \infty$; (iii) $\lim \sup_{n \to \infty} \int_{J_n} f^*(z) |dz| < \infty$.

The class $\,T_2\,$ contains the functions in $\,H\,$ with nonempty Tsuji set, so the following question is natural.

Question. Is the class T_2 of first category in H?

The author is grateful to the referee for his substantial comments, including a simpler proof of Lemma 3.

REFERENCES

- 1. F. Bagemihl, Tsuji points and Tsuji functions, Comment Math. Univ. St. Paul. 17 (1968), 17-20. MR 38 #6072.
- 2. E. F. Collingwood and G. Piranian, Tsuji functions with segments of Julia, Math. Z. 84 (1964), 246-253. MR 29 #3637.
- 3. W. K. Hayman, The boundary behavior of Tsuji functions, Michigan Math. J. 15 (1968), 1-25. MR 37 #4265.
- 4. M. Tsuji, A theorem on the boundary behavior of a meromorphic function in |z|<1, Comment Math. Univ. St. Paul. 8 (1960), 53-55. MR 22 #11131.

DEPARTMENT OF MATHEMATICS, IOWA STATE UNIVERSITY, AMES, IOWA 50010