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A MAXIMAL REALCOMPACTIFICATION WITH

0-DIMENSIONAL OUTGROWTH

MARLON C. RAYBURN1

ABSTRACT. If X is a rimhard space, then it has a realcompactifica-

tion with properties similar to those of the Freudenthal compactification

of a rimcompact space.

1.  Rimhard spaces.  All spaces discussed in this paper are assumed

completely regular and Hausdorff, and all compactifications of such spaces

are assumed Hausdorff.  All spaces are to be nonrealcompact unless expli-

citly stated otherwise.

Several times below, we shall be concerned with a family of extensions

of a space  X.  In each case we shall identify two members of the family if

there is a homeomorphism from one onto the other which fixes  X pointwise,

and we shall partially order the resulting collection of equivalence classes

by aX < yX if there is a continuous map from yX onto  aX which fixes  X

pointwise.

The particular case where the family of extensions is the upper semi-

lattice a(X) of compactifications of a space X has been well studied [l],

[8], [9], [12], Jv(X) has the Stone-Cech compactification ßX as its largest

element and it has a smallest element, the Alexandrov compactification X ,

if and only if X is locally compact. In the latter case, the lattice structure

of a(X) has been shown in [7] to characterize the topological structure of

ßX-X.

If  X is a rimcompact space, i.e. has a basis of open sets with compact

frontiers, then Jv(X) contains the Freudenthal compactification FX.   This

is characterized [4], [10] by the properties that  FX - X is O-dimensional

(has a basis of open-closed sets) and if  aX is any compactification such

that  aX - X is totally disconnected, then  aX < FX.
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In [11], the author introduced

Definition 1.  Let   UX be the Hewitt realcompactification of  X, put

Kx = clßxivX - X) and SX = ßX - ÍKX - X).   A set H C X is hard in X

if H is closed in X\JKX.

Notice that  X{jKx = vX\jKx  is realcompact by [3, 8.16] and that

Xn Kx  is just the set of points at which  X  fails to be locally realcompact.

Clearly a set  H is hard in  X if and only if it is the restriction of a compact

set of SX to  X.   Every compact set of  X is hard and every hard set is

closed and realcompact, though neither converse is, in general, true.

Definition 2.  A space is rimhard if it has a basis of open sets with hard

frontiers.

Easily, both rimcompact spaces and locally realcompact (= locally hard

[ll])   spaces are rimhard.  Examples are given in §4 of a rimcompact but

not locally realcompact space, and of a locally realcompact but not rimcom-

pact space.

Lemma L  Let X be dense in T and for each  U C T, let dyU be the

frontier of U in  T.   Then for every open  U C T, dxiX <~)U) = XCid^-U.

Theorem 1.   X  is rimhard if and only if SX is rimcompact.

Proof.  (If). Let A be an open set of X, p e A and A    open in SX such

that A   CiX = A.   Then there is an open set G„  in SX with p e GQ C A     such

that o'gx'-'o  *s compact. Let G = XOG..  Then p e G C A- and dxG = XO

dexGQ, which is hard.

(Only if). Let U be a nonempty open set in SX and G be open in ßX

such that GCiSX = U. Either (1) G £KX or (2) G Ç Kx. (Notice that G C

Kx if and only if U C Kx.)

Case 1.  G <f_ Kx.   Since Kx is compact, G — Kx is a non-0, /3X-open

subset of  U.   Let p £ G - Kx.   Since  ßX is regular, there is a /3X-open   V

such that p £ V C cl ßxV CG- Kx.   By the lemma, d ßxV = d^xV, which is

thus compact.

Case 2.   U C KxdX.  Thus   U = U C\ X is open in  X, so there is an  X-

open A CU with dxA hard.  Let H be open in ßX such that HC\X = A, and

let T = HCiG.  Then

Sxnr = //n(SXnG) = fin(/ci/cx.

Thus //ni/ Ç //OX = A.  So TnSX = A and A is open in SX.  Now A C

XCiKx C K^.   Let p e SX - Kx.   Then p  and  K^  are disjoint closed sets in
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ßX, so there exist /3X-open disjoint sets 5 and M with p £ S and Kx C M.

Then p £ SC\8X, open in SX and disjoint from Kx. Whence (5nSX) O A = 0

and p ¿ dlxA.  Thus dsxAçXnKx.

By Lemma 1, r5xA = Xnd^A = r3sxA.   Therefore

dxA = clXuKxdXAÇKxtXvKx

and Kx is compact. Therefore d*xA is compact and SX is rimcompact.

2. Close and tight realcompactifications. In [6], we considered the partial-

ly ordered family of tight realcompactifications (i.e. containing no proper

realcompactifications) of  X and its algebraic influence on the topological

structure of  vX — X.   The compactifications of SX give rise in a natural

way to another family of realcompactifications of  X, whose algebraic struc-

ture can shed light on the topology of  Kx - X.  In order to investigate this

second family and its relations to the tight realcompactifications, we shall

need 111J,

Proposition 1.  Let  X be realcompact and f be a quotient map from  X

onto  Y.   Let M~{y£Y: \f  (y)| > 1 !.  Then  Y is realcompact if and only if

clyM  IS hard in  Y.

Lemma 2.  // a(SX) is a compactification of SX, then a(SX) - (SX — X)

¿5 a realcompactification of X.

Proof. Let a(SX) - (SX - X) = S.   Let / be the quotient map from

ßiSX) = ßX onto aiSX) which fixes SX pointwise.  By [3, 6.12], we have

flßX - SX] = flKx - X] = S - X.   Let  g  be the restriction of / to realcom-

pact Xuffv, so g is a quotient map onto 5.   But M = ¡y £ S: Ig*-(y)| > il

CS-XC /tK^.] which is compact.  Therefore clsM is hard in S and by

Proposition 1, S is realcompact.  Clearly  X is dense in  S.

Definition 3.  A realcompactification S of X is called close iff S =

aiSX) — (SX — X) for some compactification aiSX) oí SX.  Since  a(SX) is

both a compactification of S and a quotient of ßX which leaves SX point-

wise fixed, it follows that  aiSX) = ßS.   Denote the partially ordered family

of close realcompactifications as  P 4.X).

It is clear that Pj(X) is isomorphic to MSX), the compactifications of

SX.   This allows us to make certain immediate statements about P JX); fot

example, by [6, Lemma 2.10], X is locally realcompact and not realcompact

(hereafter stated as  X is l.r.) if and only if SX is locally compact and

not compact. In this case the structure of K(SX) characterizes ßiSX) —
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SX = Kx [7]. So for an l.r. space X, the algebraic structure of P ¡.(X) de-

termines the topology of Kx. In particular, the close realcompactification

of X corresponding to the Alexandrov compactification of SX will be X,

the maximal one-point realcompactification of X. This was constructed in

[5, Theorem 4.1] by collapsing Kx (which is here disjoint from X) to a

single point.

From [6, Lemma 3.4], we have

Proposition 2.  Lei*  T be a tight realcompactification of X and let f: .

ßX—»ßT be the continuous map fixing  X pointwise.   The following are

equivalent:

(a) the restriction of f to  X\J Kx  is perfect (i.e. a closed map with

compact fibers);

(b) the restriction of j to  XijKx  is quotient;

(c) the restriction of f to SX  is a homeomorphism;

Moreover if X  is l.r., these are equivalent to

(d) *X < T.

Definition 4.  Let T be a realcompactification of X.   Then  T e P  (x)

iff T is the tight realcompactification of  X contained in some compactifi-

cation a(SX) of SX.

Lemma 3«,  Let T be a tight realcompactification of X.   Then T e P  (X)

iff ßT eK(Sx).

Proof.  (If)  is trivial.  Conversely, there is some compactification

a(SX) of SX which contains   T.   Since  T is dense in  a(SX), there is a

continuous map g from  ßT onto  a(SX) preserving T  pointwise.  But  ßT

is a compactification of  X, so there is a continuous map  / from  ßX onto

ßT fixing  X pointwise.  Thus  g ° / is a continuous map from  ßX onto

a(SX) which fixes at least X pointwise.  But ßX = ßiSX), so there is a

continuous map  h from  ßX onto  a(SX)  which fixes  SX pointwise.  Since

h and g ° f agree on the dense subset X, they must agree everywhere. In

particular / must fix SX pointwise, i.e.  ßT is a compactification of SX.

Corollary 1.  Let  T be a tight realcompactification of X.   Then  T £

P (X)  /// T satisfies any one part (hence all) of Proposition 2.

Corollary 2.  If T £ P*(X), then X Ucl^T - X) e P S(X).

Proof.  ßT is a compactification of SX  and  X[JclßTiT — X) = ßT —

(SX — X).   The result now follows from Lemma 2.
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P*(X) has been discussed in [6, 5(A)], where it was observed that if

X is  l.r.  and   vX is Lindelô'f, its algebraic structure characterizes the

topology of   uX — X.   By [3, 8.9], every close realcompactification contains a

tight realcompactification; but as vX and Xu^ show, they are generally distinct.

As a final remark, we see that while the partial order of P g(X) is that

of the compactifications of SX, the partial order of P (X) can be obtained

from that of the compactifications of X as in  [6, Lemma 3.2].

Proposition 3.  Let  T.   and T.  be in P  (X).   Then   T. < T,   in P  (X)

if and only if ßT , < ßT2  t» K(X).

3.   Realcompactifications with  O-dimensional outgrowth.

Definition 5. Suppose B is a proper subset of space A. Then A is

extensively disconnected outside B if cl ß,(A — B) - B is totally disconnected.

In particular, let  T £ P  (X) and  S be its generated close realcompac-

tification as in Corollary 2 of Lemma 3-  Clearly  T is extensively discon-

nected outside  X if and only if S — X is totally disconnected.  Recollect

that a space  X  is strongly O-dimensional [2, Chapter 6, §2]  if any two

completely separated sets of  X  are separated by a partition.   Every strongly

O-dimensional space is  O-dimensional, and if  X is Lindelô'f, the two are

equivalent.

Lemma 4. Let B be a proper subset of space A. If A — B is C -em-

bedded in A and is strongly O-dimensional, then A is extensively discon-

nected outside  B.

Proof» By [3, 6.9(a)], /3(A - B) = cl^(A - B). By [2, Theorem 6.8],

/3(A — B) is strongly O-dimensional if and only if  A - B   is.

Theorem 2. Let X be rimhard. Then there is a close realcompactifi-

cation S of X such that S„ — X is O-dimensional. Moreover, if S is in

P JX)  and S - X is totally disconnected, then  S < S

Proof.  By Theorem 1, SX is rimcompact and hence admits the Freud-

enthal compactification  FiSX).   Let   SQ  be the close realcompactification

of  X  such that  SQ - X = FiSX) - SX.   Then  SQ - X is  O-dimensional, and

since  Pg(X)  is isomorphic to K(SX), the maximality condition follows im-

mediately from the corresponding statement for  FiSX).

Corollary 1. Let X be rimhard. There is a tight realcompactification

TQ in P*(X) such that TQ - X is O-dimensional. Moreover if T £ P*(X)

is extensively disconnected outside  X, then  T < T
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Proof.   Let  T    be the tight realcompactification of  X  contained in  SQ.

Since O-dimensionality is hereditary, T. — X is  O-dimensional.  Suppose

T e P   (X) is extensively disconnected outside  X and that  Sj. = ßT -

(SX - X).   Then since  rarC ßT, we have ßT = ßST < ßS0.  Since  TQ C

S , we have ßS   < ßT .  Hence  ßT < /ST.  and by Proposition 3, T < T..

Corollary 2.   Lei  X  be rimhard and   vX - X  be closed in ßX - X.   Let

F    be the tight realcompactification of Corollary 1.   If T £ P  (X) has  T — X

totally disconnected, then  T < T..

Corollary 3.  Let  X  be l.r.   and T £ P*(X)  be Lindelöf.   If T - X  is

O-dimensional, then  T < TQ.

Proof.   T — X is a closed subspace of Lindelöf (hence normal) T, so

T - X is  C*-embedded in T.  Since a Lindelöf O-dimensional space is

strongly O-dimensional, the result now follows from Lemma 4.

Notice that if   vX is Lindelöf, then T is Lindelöf for every T in P (X).

4.   Examples.  A.  Two rimhard spaces.

(i) A rimcompact space which is not locally realcompact. Let N be

the space of positive integers and W the space of ordinals less than the

first uncountable ordinal at.. Let W = Wu {cú ¡J be its compactification,

and set X = (W x ßN) — Í{cú A x N). This X is pseudocompact, so 1>X =

ßX = W x ßN. Since X has a countable compactification, by [10, Theorem

1, Corollary 2], it is rimcompact. But the set of points at which X is not

locally realcompact is  XDcl ,,x(uX - X), a copy of  ßN - N.

(ii)  A locally realcompact space which is not rimcompact.  Let  Y be

the subspace of the plane formed by the origin and all rays from the origin

of slope   I/22  for each positive integer n.   Then   Y  is Lindelöf, so realcom-

pact, yet the frontier of an open disk about the origin hits   Y in a Cauchy

sequence which fails to converge in   Y.   Thus   Y is not rimcompact.

Indeed, if we let  X be the free union of   V  and  W, then  X  is neither

rimcompact nor realcompact.  But  X  admits a one point realcompactification

Vu W*, so  X is l.r.

B.   A nonrimhard   space having a maximal close realcompactification

with O-dimensional outgrowth.  Let   W be the countable ordinals and  W* =

WuitUj! be its one point compactification.  Let   Y be a nonrimcompact

space having a compactification aX such that aV - V is O-dimensional;

such a space can be found in [4, VII, 25].  Define  X = [W* x aY] - [jojjS x

(aY - Y)].   Then ßX - X = ¡w x\ x (aY - Y) is O-dimensional and the resi-
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due of  X (i.e., the set of points at which   X is not locally compact) is

R(X) = {cúA x [Ynclay(aY - Y)].   Since   Y   cannot be locally compact,

R(X) is a nonempty closed subset of  X  and since rimcompactness is

closed-hereditary, X is not rimcompact. But X is pseudocompact, so X = SX and by

Theorem 1, X  is not rimhard. Yet  ßX - X = vX - X = cl „x(uX - X) - X,

so  ßX is the maximal close realcompactification of  X.   This example an-

swers a question of the referee as to the converse of the first part of Theorem 2.

The author wishes to thank the referee for his valuable criticisms and

suggestions.  In particular, these led to a significant improvement in what

is now Lemma 3 and its corollaries, and to the uncovering of an error in the

original version of what is now Corollary 1 to Theorem 2.  The author had

claimed that the tight realcompactification    T    of that result was itself

extensively disconnected outside  X.  The proof of this was certainly in er-

ror, and although no counterexample has come to hand, the author now conjec-

tures that the claim itself is false.
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