THE GENUS OF SUBFIELDS OF $K(n)$

JOSEPH B. DENNIN, JR.

Abstract

In this paper we fix a genus g and show that the number of fields of elliptic modular functions F of genus g is finite.

1. Introduction. Let Γ be the group of linear fractional transformations $w \rightarrow(a w+b) /(c w+d)$ of the upper half plane into itself with integer coefficients and determinant $1 . \Gamma$ is isomorphic to the group of 2×2 matrices with integer entries and determinant 1 in which a matrix is identified with its negative. $\Gamma(n)$, the principal congruence subgroup of level n, is the subgroup of Γ consisting of those elements for which $a \equiv d \equiv 1(\bmod n)$ and $b \equiv$ $c \equiv 0(\bmod n) . G$ is called a congruence subgroup of level n if G contains $\Gamma(n)$ and n is the smallest such integer. G has a fundamental domain in the upper half plane which can be compactified to a Riemann surface and then the genus of G is defined to be the genus of the Riemann surface. We denote by $K(n)$ the field of elliptic modular functions of level n, i.e., the field of meromorphic functions on the Riemann surface corresponding to $\Gamma(n)$. If j is the absolute Weierstrass invariant, $K(n)$ is a finite Galois extension of $C(j)$ with $\Gamma / \Gamma(n)$ for Galois group. $\operatorname{SL}(2, n)$ is the special linear group of degree two with coefficients in $Z / n Z$ and $\operatorname{LF}(2, n)=\operatorname{SL}(2, n) / \pm I$ where I is the identity matrix. Then $\Gamma / \Gamma(n) \cong \mathrm{LF}(2, n)$. If $\Gamma(n) \subseteq G \subseteq \Gamma$ and H is the corresponding subgroup of $\operatorname{LF}(2, n)$, then by Galois theory H corresponds to a subfield F of $K(n)$ and the genus of F, denoted by $g(F)$, equals the genus of G.

In this paper we fix a genus g and show that the number of F such that $C(j) \subseteq F \subseteq K(n)$ for some n amd such that $g(F)=g$ is finite. More precisely we prove that, for the fixed g, there are constants r, t_{1}, \ldots, t_{r} such that any field of genus g is a subfield of $K\left(p_{1}^{t} 1 \cdots p_{r}^{t_{r}}\right)$ where p_{1}, \ldots, p_{r} are the first r primes arranged in their natural order. A corollary to this result is a proof of a conjecture of H . Rademacher that the number of congruence subgroups of Γ of genus 0 is finite. Some previous results on the Rademacher

[^0]conjecture have been obtained by Knopp and Newman [51, McQuillan [8] and the present author [1], [2]. The case of arbitrary genus g and $n=p^{m}$, a prime power, has been considered in [3]. The proof of the theorem is in two steps. First we show that there is an r such that any field of genus g is a subfield of $K\left(p_{1}^{x} \cdots p_{r}^{x_{r}}\right)$ for some $x_{i}, 1 \leq i \leq r$. Then we find constants

2. Preliminaries. The following notation will be standard. $G(L / K)$ is the Galois group of L over $K . g(K)$ is the genus of $K . K \cdot K^{\prime}$ is the compositum of K and K^{\prime} considered in some larger field containing both K and $K^{\prime} .|A|$ denotes the order of the group $A .\langle c\rangle$ is the group generated by c. With the primes considered in their natural order, p_{i} is the i th prime. p_{τ} is the largest prime p such that, for some $x, K\left(p^{x}\right)$ contains a field of genus $\leq g$ other than $C(j) . p_{r}$ exists by [3, Proposition 2.6] and is larger than 3.

Suppose G is a subgroup of $G_{1} \times G_{2}$. Let $N_{i}=$ the projection of G onto $G_{i} ; f t_{1}=\left\{g_{1} \mid g_{1} \in G_{1},\left(g_{1}, 1\right) \in G\right\} ; f t_{2}=\left\{g_{2} \mid g_{2} \in G_{2},\left(1, g_{2}\right) \in G\right\}$. $f t_{i}$ is called the i th foot of G. We will use extensively the following proposition on subgroups of the direct product of two finite groups which can be found in $[7]$.

Proposition 1. Suppose $G \subseteq G_{1} \times G_{2}$ with G_{1}, G_{2} finite. Then $f t_{i}$ is a normal subgroup of $N_{i}, i=1,2$, and $N_{1} / f t_{1} \simeq N_{2} / f t_{2}$.

We now collect some basic facts about the groups $\operatorname{LF}(2, m)$ which we will need. $|\operatorname{LF}(2, m)|=1 / 2 m \phi(m) \psi(m)$ where $\phi(m)$ is the Euler ϕ function and $\psi(m)=m \Pi_{p \mid m}(1+1 / p)$. Suppose p is a prime and consider the natural homomorphism $f_{r}^{n}: \operatorname{LF}\left(2, p^{n}\right) \rightarrow \mathrm{LF}\left(2, p^{r}\right)$ defined by reduction modulo $p^{r}, 1 \leq r<n$. The kernel of $f_{r}^{n}=K_{r}^{n}$ and $\left|K_{r}^{n}\right|=p^{3(n-r)}$ if $p \neq 2, r \neq 1 ;\left|K_{1}^{n}\right|=2^{3 n-4}$ for $p=2$. For $p>3$, the only nontrivial normal subgroups of $\operatorname{LF}\left(2, p^{n}\right)$ are $K_{r}^{n}, 1 \leq r<n$ [7]. The following lemma is proven in [4] for $p>2$ and in [2] for $p=2$.

Lemma 1. If $\left|H \cap K_{n-1}^{n}\right| \leq p^{2}$, then $\left|H \cap K_{t}^{n}\right| \leq p^{2 n-2 t}, 1 \leq t \leq n-1$.
As an easy corollary to this we have
Corollary 1. If H is a subgroup of K_{t}^{n} and $|H| \geq 2 n-2 t+r$ for some $r, 1 \leq r \leq n-t$, then $K_{n-r}^{n} \subseteq H$.

The following is a collection of facts about fields and Galois groups which we will use. The proofs are straightforward and most can be found in a standard text such as Lang [6]. Suppose K and K^{\prime} are subfields of L and $K \cap K^{\prime}=k$.
(1) $G\left(L / K \cdot K^{\prime}\right)=G(L / K) \cap G\left(L / K^{\prime}\right)$.
(2) $G(L / k)=G(L / K) \cdot G\left(L / K^{\prime}\right)$ if K or K^{\prime} is normal over k.
(3) $G\left(K \cdot K^{\prime} / k\right) \simeq G(K / k) \times G\left(K^{\prime} / k\right)$ with the isomorphism given by projecting σ in $G\left(K \cdot K^{\prime} / k\right)$ onto both factors.
(4) $G\left(K \cdot K^{\prime} / K\right) \simeq G\left(K^{\prime} / k\right)$ with the isomorphism given by restricting σ in $G\left(K \cdot K^{\prime} / K\right)$ to K^{\prime}.
(5) If $k \subseteq M \subseteq L$ and $k \subseteq F \subseteq K$ are fields with $L \cap K=k$, then in $K \cdot L$, $(F \cdot L) \cap(K \cdot M)=F \cdot M$.
3. Main results. Let $n=m p^{s}$ with (p, m) $=1$ and p the largest prime dividing n. Consider the following diagram of fields and Galois groups.

$G \simeq \operatorname{LF}(2, m) \times \operatorname{LF}\left(2, p^{s}\right) . G(m)$ is the kernel of the natural homomorphism from $\operatorname{LF}(2, n)$ to $\operatorname{LF}(2, m)$ and equals $\left\{\left. \pm\binom{ a b}{c d} \right\rvert\, a \equiv d \equiv 1, b \equiv c \equiv 0(\bmod m)\right\}$. $\langle c\rangle$ has order 2 and is the kernel of the homomorphism from $\operatorname{LF}(2, n)$ to G. By the Chinese remainder theorem, $c= \pm\binom{ a 0}{0}$ with $a \equiv 1(\bmod m)$ and $a \equiv$ $-1\left(\bmod p^{s}\right)$. Hence $\langle c\rangle$ is contained in the center of $\operatorname{LF}(2, n)$.

Lemma 2. $G(m) \simeq \operatorname{SL}\left(2, p^{s}\right)$.
Proof. Consider $\theta: \operatorname{SL}\left(2, p^{s}\right) \times\left\{\binom{10}{01}\right\} \rightarrow \operatorname{LF}(2, m)$ given by:

$$
\begin{aligned}
\operatorname{SL}\left(2, p^{s}\right) \times\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\} & \xrightarrow{i} \operatorname{SL}\left(2, p^{s}\right) \times \operatorname{SL}(2, m) \\
& \xrightarrow{f} \operatorname{SL}(2, n) \xrightarrow{g} L F(2, n) \xrightarrow{h} L F(2, m)
\end{aligned}
$$

where i is the injection, f is the isomorphism given by the Chinese remainder theorem, g is reduction mod $\pm I$ and h is the natural homomorphism. Then $G(m)$ equals the kernel of h and $g \circ f \circ i$ is $1-1$ into $G(m)$ since the
intersection of the kernel of g and the image of $f \circ i=I$. But $|G(m)|=$ $p^{s} \phi\left(p^{s}\right) \psi\left(p^{s}\right)=\left|\operatorname{SL}\left(2, p^{s}\right)\right|$ so that the map is onto. Hence $\operatorname{SL}\left(2, p^{s}\right) \simeq G(m)$.

Proposition 2. Suppose $F \subseteq K(m) K\left(p^{s}\right)$ with $(m, p)=1$, p the largest prime dividing n and $p>p_{r}$. If $g(F) \leq g$, then $F \subseteq K(m)$.

Proof. Let $H=G\left(K(m) \cdot K\left(p^{s}\right) / F\right)$ so that $H \subseteq \operatorname{LF}(2, m) \times \operatorname{LF}\left(2, p^{s}\right)$. N_{2}, the projection of H onto $\operatorname{LF}\left(2, p^{s}\right),=G\left(K\left(p^{s}\right) / F \cap K\left(p^{s}\right)\right)$. But $g\left(F \cap K\left(p^{s}\right)\right)$ $\leq g(F)$ and so by the assumption on $p, F \cap K\left(p^{s}\right)=C(j)$. Therefore $N_{2}=$ $\operatorname{LF}\left(2, p^{s}\right) . f t_{2}$ is normal in N_{2} and, since $p>3, f t_{2}=K_{t}^{s}$ for some t. Therefore $N_{2} / f t_{2} \simeq \operatorname{LF}\left(2, p^{t}\right)$ and so p divides $\left|N_{2} / f t_{2}\right|$. But $N_{2} / f t_{2} \simeq N_{1} / f t_{1}$ so that p divides $\left|N_{1}\right|$. But $N_{1} \subseteq \operatorname{LF}(2, m)$ and $p \nmid|\operatorname{LF}(2, m)|$. So $N_{2}=$ $f t_{2}$ and $N_{1}=f t_{1}$. So $H=N_{1} \times \mathrm{LF}\left(2, p^{s}\right)$ and by Galois theory, $F \subseteq K(m)$.

Proposition 3. Suppose $F \subseteq K\left(m p^{s}\right)$ with $(m, p)=1$, p the largest prime dividing n and $p>p_{r}$. If $g(F)=g$, then $F \subseteq K(m) \cdot K\left(p^{s}\right)$.

Proof. Let $H=G(K(n) / F)$. If $c \in H$, we are done. So suppose $H \cap\langle c\rangle$ $=I . \quad H \cdot\langle c\rangle=G\left(K(n) / F \cap K(m) K\left(p^{s}\right)\right)$. By Proposition 2, $F \cap K(m) \cdot K\left(p^{s}\right) \subseteq K(m)$ since $g\left(F \cap K(m) \cdot K\left(p^{s}\right)\right) \leq g(F)$. So $G(m) \subseteq H \cdot\langle c\rangle$. So

$$
G(m)=G(m) \cap(H \cup c H)=(G(m) \cap H) \cup c \cdot(G(m) \cap H)
$$

since $c \in G(m)$. Therefore $G(m) \cap H$ is a normal subgroup of index 2 in $G(m)$. But by Lemma 2, $G(m) \cong \operatorname{SL}\left(2, p^{s}\right)$ which has no subgroups of index 2 for $p>3$ [7]. So $H \cap\langle c\rangle \neq I$.

Theorem l. If F has genus g, then $F \subseteq K\left(p_{1}^{x} 1 \cdots p_{r}^{x}\right)$ for some $x_{i}, 1 \leq$ $i \leq r$.

Proof. Suppose $F \subseteq K(n)$ and p is the largest prime not in $\left\{p_{1}, \ldots, p_{r}\right\}$ which divides n. Write $n=m p^{s}$ with $(m, p)=1$. Then by Proposition 3, $F \subseteq K(m) K\left(p^{s}\right)$ and then by Proposition 2; $F \subseteq K(m)$. Repeating the argument, one has, after a finite number of steps, $F \subseteq K(m)$ with p_{1}, \ldots, p_{r} the only primes dividing m.

For $1 \leq i \leq r$, let e_{i} be the smallest power of p_{i} such that any field $\neq C(j)$ of genus $\leq g$ which is contained in $K\left(p_{i}^{x_{i}}\right)$ for some x_{i} is actually contained in $K\left(p_{i}^{e} i\right)$ [3]. Suppose $p_{i}^{d_{i}} \| \Pi_{j=i+1}^{r}\left(p_{j}^{2}-1\right)$. Since $K\left(p^{x}\right) \subseteq K\left(p^{x+1}\right)$, we may assume in the following that, for all $i, x_{i}>e_{i}+d_{i}$.

Proposition 4. Suppose $F \subseteq \prod_{i=1}^{r} K\left(p_{i}^{x}\right)$ with $x_{i}>e_{i}+d_{i}$ and $g(F) \leq g$. Then

$$
F \subseteq K\left(p_{1}^{e_{1}+d_{1}}\right) \cdot K\left(p_{2}^{e_{2}+d_{2}+1}\right) \prod_{i=3}^{r} K\left(p_{i}^{e_{i}+d_{i}}\right)
$$

Proof. The proof is by induction on the number of primes. Suppose

$$
F \subseteq K\left(p_{r-1}^{x}{ }^{r-1}\right) \cdot K\left(p_{r}^{x}\right) \quad \text { and } \quad H=G\left(K\left(p_{r-1}^{x}\right) \cdot K\left(p_{r}^{x}\right) / F\right)
$$

so that $H \subseteq \operatorname{LF}\left(2, p_{r-1}^{x_{r}}-1\right) \times \operatorname{LF}\left(2, p_{r}^{x_{r}}\right)$. Then, since

$$
N_{2}=G\left(K\left(p_{r}^{x}\right) / F \cap K\left(p_{r}^{x_{r}}\right)\right) \quad \text { and } \quad\left(F \cap K\left(p_{r}^{x} r\right)\right) \subseteq K\left(p_{r}^{e} r\right)
$$

$N_{2} \supseteq K_{e_{r}}^{x}$. There is an $H^{\prime} \subseteq H$ such that $N_{2}^{\prime}=K_{e_{r}}^{x}$. Then $\left|N_{2}^{\prime} / f t_{2}^{\prime}\right|$ divides p_{r}^{y} but $p_{r}+\left|N_{1}^{\prime}\right|$ since $N_{1}^{\prime} \subseteq \operatorname{LF}\left(2, p_{r}^{e_{r}-1}\right)$. So $N_{2}^{\prime}=f t_{2}^{\prime}=K_{e_{r}}^{x_{r}}$. But $f t_{2} \supseteq$ $f t_{2}^{\prime}$ so that $I \times K_{e_{r}}^{x_{r}} \subseteq H$ and $F \subseteq K\left(p_{r-1}^{x_{r}-1}\right) \cdot K\left(p_{r}^{e_{r}}\right)=L_{1}$. Similarly

$$
N_{1}=G\left(K\left(p_{r-1}^{x}\right) / F \cap K\left(p_{r-1}^{x-1}\right)\right) \quad \text { and so } \quad K_{e_{r-1}}^{x_{r-1}} \subseteq N_{1} .
$$

There is an $H^{\prime} \subseteq H$ such that $N_{1}^{\prime}=K_{e_{r-1}}^{x_{r-1}} . \quad\left|N_{1}^{0} / f t_{1}^{\prime}\right|=p_{r-1}^{y}$ and $N_{1}^{\prime} / f t_{1}^{\prime} \simeq$ $N_{2}^{\prime} / f t_{2}^{\prime}$. So $p_{r-1}^{y} \mid p_{r}^{2}-1$ and $y \leq d_{r-1}$. Let $\left|f t_{1}^{\prime}\right|=p_{r-1}^{z}$. Then $\left(3 x_{r-1}-\right.$ $\left.3 e_{r-1}\right)-z=y<d_{r-1}$, i.e.

$$
z>\left(3 x_{r-1}-3 e_{r-1}\right)-d_{r-1}=\left(2 x_{r-1}-2 e_{r-1}\right)+\left(\left(x_{r-1}-e_{r-1}\right)-d_{r-1}\right)
$$

and so, by the corollary to Lemma $1, f t_{1}^{\prime} \supseteq K_{e_{r-1}}^{x_{r-1}}+d_{r-1}$. So

$$
K_{e_{r-1}+d_{r-1}}^{e_{r-1}} \times I \subseteq H \quad \text { and } \quad F \subseteq K\left(p_{r-1}^{e}{ }_{r-1}^{+d_{r-1}}\right) \cdot K\left(p_{r}^{x}\right)=L_{2}
$$

Then $F \subseteq L_{1} \cap L_{2}$ which by fact (5) equals $K\left(p_{r-1}^{e_{r}}{ }^{1+d_{r-1}}\right) K\left(p_{r}^{e_{r}}\right)$.
Now suppose

$$
F \subseteq K\left(p_{t}{ }^{x}\right) \cdot \prod_{i=t+1}^{r} K\left(p_{i}{ }^{\boldsymbol{x}}\right), \quad F \cap \prod_{i=t+1}^{r} K\left(p_{i}{ }^{\boldsymbol{x}}\right) \subseteq \prod_{i=t+1}^{r} K\left(p_{i}{ }^{e_{i}+d_{i}}\right)
$$

and

$$
H=G\left(\prod_{i=t}^{r} K\left(p_{i}^{x_{i}}\right) / F\right)
$$

Then $N_{2} \supseteq \Pi_{i=t+1}^{r} K_{e_{i}+d_{i}}^{x_{i}}$ and so there is an $H^{\prime} \subseteq H$ such that $N_{2}^{\prime}=$ $\Pi_{i=t+1}^{r} K_{e}^{x_{i}}+d_{i}$. Then $N_{2}^{\prime} / f t_{2}^{\prime} \cong N_{1}^{\prime} / f t_{1}^{\prime},\left|N_{2}^{\prime} / f t_{2}^{\prime}\right|$ divides $\Pi_{i=t+1}^{r} p_{i}^{y_{i}}$ and, if $p_{t+1} \neq 3$, no p_{i} divides $\left|N_{1}{ }^{\prime}\right|$. So

$$
N_{2}^{\prime}=f t_{2}^{\prime} \quad \text { and } \quad f t_{2} \supseteq f t_{2}^{\prime}=\prod_{i=t+1}^{r} K_{e_{i}+d_{i}}^{x_{i}}
$$

So

$$
F \subseteq K\left(p_{t}^{x}\right) \cdot\left(\prod_{i=t+1}^{r} K\left(p_{i}^{e_{i}+d_{i}}\right)\right)=L_{1}
$$

If $p_{t+1}=3$, then it is possible that $p_{t+1} \|\left|N_{1}^{\prime}\right|$ in which case, arguing as
in the 2nd part of the first step of the induction, one gets

$$
F \subseteq K\left(p_{t}^{x}\right) \cdot K\left(p_{t+1}^{e_{t+1}+d_{t+1}+1}\right) \cdot \prod_{i=t+2}^{r} K\left(p_{i}^{e_{i}+d_{i}}\right)=L_{1} .
$$

Similarly $K_{e_{t}}^{x} \subseteq N_{1}$ and so there is an $H^{\prime} \subseteq H$ such that $N_{1}^{\prime}=K_{e_{t}}^{x}$. Let $\left|N_{1}^{\prime} / f t_{1}^{\prime}\right|=p_{t}^{y}$ and $\left|f t_{1}^{\prime}\right|=p_{t}^{z}$. Then, as before, $z>\left(2 x_{t}-2 e_{t}\right)+\left(\left(x_{t}-e_{t}\right)\right.$ $-d_{t}$) and so $f t_{1}^{\prime} \supseteq K_{e_{t}}^{x}+d_{t}$. Therefore

$$
F \subseteq K\left(p_{t}^{e_{t}+d_{t}}\right) \cdot\left(\prod_{i=t+1}^{r} K\left(p_{i}^{x_{i}}\right)\right)=L_{2} .
$$

Again $F \subseteq L_{1} \cap L_{2}$ which equals $\Pi_{i=t}^{r} K\left(p_{i}^{e_{i}+d_{i}}\right)$ unless $p_{t+1}=3$ in which case case $e_{t+1}+d_{t+1}$ has to be replaced by $e_{t+1}+d_{t+1}+1$.

Let $n=\Pi_{i=1}^{r} p_{i}^{x_{i}}, L=\Pi_{i=1}^{r} K\left(p_{i}^{x i}\right)$ and $A=G\left(K(n) / K\left(p_{1}^{x} p_{2}^{t}{ }_{2}^{2} \cdots p_{r}^{t_{r}}\right)\right)$ where $t_{2}=e_{2}+d_{2}+1$ and $t_{i}=e_{i}+d_{i}, i \neq 2$.

Proof. Let

$$
c_{i}= \pm\left(\begin{array}{ll}
a_{i} & 0 \\
0 & a_{i}
\end{array}\right), a_{i} \equiv 1\left(\bmod \prod_{j=1 ; j \neq i}^{r} p_{j}^{x_{j}}\right), a_{i} \equiv-1\left(\bmod p_{i}^{x_{i}}\right)
$$

be the nontrivial element in the kernel of the homomorphism from $\operatorname{LF}(2, n)$ to $\operatorname{LF}\left(2, p_{i}^{x} i\right) \times \operatorname{LF}\left(2, \Pi_{j=1 ; j \neq i}^{r} p_{j}^{x} j\right)$. Then C, the group generated by the $c_{i}, 1 \leq i \leq r$, equals $G(K(n) / L)$, is contained in the center of $\operatorname{LF}(2, n)$ and has order $2^{r-1} \cdot G(K(n) / F \cap L)=C \cdot H$ and $[C H: H]=2^{s}, 0 \leq s \leq r-1$. By Proposition 4, $F \cap L \subseteq K\left(p_{1}^{x} 1\right) \cdot \Pi_{i=2}^{r} K\left(p_{i}^{t_{i}}\right)$ and so

$$
F \cap L \subseteq F \cap K\left(p_{1}^{x}{ }_{1} p_{2}^{t} 2 \cdots p_{r}^{t}\right)
$$

Therefore

$$
G\left(K(n) / K\left(p_{1}^{x} p_{2}^{t} 2 \cdots p_{r}^{t}\right) \cap F\right)=A \cdot H \subseteq C \cdot H .
$$

So we have $H \subseteq A \cdot H \subseteq C \cdot H$ and H is normal in $C \cdot H$ since C is in the center of $\operatorname{LF}(2, n)$. So H is normal in $A H$ and $A H / H \cong A / H \cap A$. So $H \cap A$ is a normal subgroup of A of index $2^{t}, 0 \leq t \leq s$. But $|A|=\prod_{i=2}^{r} p_{i}^{3\left(x_{i}-t_{i}\right)}$ which is odd. So $A \cap H=A$ or $A \subseteq H$. Therefore $F \subseteq K\left(p_{1}^{x}{ }_{1} p_{2}^{t}{ }^{2} \cdots p_{r}^{t_{r}}\right)$.

Proposition 6. Suppose $F \subseteq K(n)$ with $n=2^{x} m,(2, m)=1$ and $g(F)=g$. Then $F \subseteq K\left(2^{t+1} m\right)$ where $t=e_{1}+d_{1}$.

Proof. As before, let

$$
C=G\left(K(n) / K\left(2^{x}\right) \cdot K(m)\right) \quad \text { and } \quad A=G\left(K(n) / K\left(2^{t} m\right)\right) .
$$

$|C|=$ 2. $F \cap K\left(2^{x}\right) K(m) \subseteq K\left(2^{t}\right) K(m)$ and so $F \cap K\left(2^{x}\right) \cdot K(m) \subseteq F \cap K\left(2^{t} m\right)$. Therefore $H \subseteq A H \subseteq C H$. Since $[C H: H] \leq 2$, there are 2 possibilities. If $H=C \cdot H$, then $H=A \cdot H, A \subseteq H$ and so $F \subseteq K\left(2^{t} m\right)$. If $[C H: H]=2$ and $H=A H$, again $A \subseteq H$ and we are done. So assume $[A H: H]=2$. Then since $A H / H \cong$ $A / H \cap A, H \cap A$ is a normal subgroup of index 2 in A. Let

$$
A^{\prime}=G\left(K\left(2^{x}\right) \cdot K(m) / K\left(2^{t}\right) K(m)\right)
$$

and let $\phi: A \rightarrow A^{\prime}$ be the homomorphism obtained by restricting an automorphism σ to $K\left(2^{x}\right) \cdot K(m)$. ϕ is an isomorphism and so $\phi(H \cap A)$ has index 2 in A^{\prime}. But $A^{\prime}=K_{t}^{x}$ and so

$$
\phi(H \cap A) \supseteq K_{t+1}^{x}=G\left(K\left(2^{x}\right) \cdot K(m) / K\left(2^{t+1}\right) \cdot K(m)\right)
$$

Therefore

$$
G\left(K(n) / K\left(2^{t+1} m\right)\right) \subseteq H \cap A \subseteq H \quad \text { and } \quad F \subseteq K\left(2^{t+1} m\right)
$$

Theorem 2. If $F \subseteq K\left(p_{1}^{x} 1 \cdots p_{r}^{x_{r}}\right)$ has $g(F)=g$, then
(*)

$$
F \subseteq K\left(p_{1}{ }^{e}+d_{1}+1 \quad \cdot p_{2}{ }^{e}+d_{2}+1 \quad \cdot p_{3} e^{e_{3}+d_{3}} \cdots p_{r}{ }^{e_{r}+d_{r}}\right)
$$

Proof. Apply Propositions 5 and 6.
Combining Theorems 1 and 2, we obtain
Theorem 3. Suppose $F \subseteq K(n)$ for some n and $g(F)=g$. Then $(*)$ holds.

BIBLIOGRAPHY

1. J. Dennin, Fields of modular functions of genus 0, Illinois J. Math. 15 (1971), 442-455. MR 46 \#3638.
2. ——, Subfields of $K\left(2^{n}\right)$ of genus 0 , Illinois J. Math. 16 (1972), 502518. MR 46 \#5473.
3. ——, The genus of subfields of $K\left(p^{n}\right)$, Illinois J. Math. 18 (1974), 246-264.
4. J. Gierster, Über die Galois's che Gruppe Modulargleichungen, wenn der Transformationsgrad Potenz einer Primzahl >2 ist, Math. Ann. 26 (1886), 309-368.
5. M. I. Knopp and M. Newman, Congruence subgroups of positive genus of the modular group, Illinois J. Math. 9 (1965), 577-583. MR 31 \#5902.
6. S. Lang, Algebra, Addison-Wesley, Reading, Mass., 1965. MR 33 \#5416.
7. D. L. McQuillan, Classification of normal congruence subgroups of the modular group, Amer. J. Math. 87 (1965), 285-296. MR 32 \#2484.
8. - On the genus of fields of elliptic modular functions, Illinois J. Math. 10 (1966), 479-487. MR 34 \#1402.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CONNECTICUT, STORRS, CONNECTICUT 06268

[^0]: Received by the editors May 2, 1974.
 AMS (MOS) subject classifications (1970). Primary 10D05, 12F 10, 14H05.
 Key words and phrases. Fields of elliptic modular functions, genus, modular group.

