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ON PAIRS OF NONINTERSECTING FACES

OF CELL COMPLEXES

PHILIP L. WADLER

ABSTRACT.   We show that, for all cell complexes whose under-

lying set isa manifold, M, an alternating sum of numbers of pairs

of faces that do not intersect is a topological invariant.   This is

done by proving that it is a function of the Euler characteristic, X,

of M.

A cell complex [l, pp. 39—40]  is a finite family, C, of polytopes in R*

such that

(i)   every face of a member of C is itself a member of C;

(ii)   the intersection of any two members of C is a face of each of them.

We shall call a poly tope Pe C a face of C.   The number of/-dimensional

faces of Cl will be denoted by /..   The subset of R" consisting of all the

points of members of C will be denoted by  set C.   The boundary complex of

a id + l)-dimensional polytope, P, is the set of all faces of P  of at most

dimension  d.

Let C be any cell complex such that setC = M  where /Vf is a ¿-dimen-

sional manifold.   Then  C  will obey Euler's relation

a

(i) x(m) = L(-DV¿.

If (l is the boundary complex of a id + l)-polytope then M  will be homeo-

morphic to the surface of a hypersphere and

(2) X<M)= l + i-Dd.

Let a.. - the number of ordered pairs of faces of C of dimensions i

and  / that do not intersect.   Then the a.,  ate called incidence numbers of

C.   Note that  a .. = a ...   We are interested in the sum
'l        i'
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(3) <Me)=X¿(-l)'«a...

This and similar quantities have been investigated by Wu [2] and others.

Now we assign to each of the /. ¿-dimensional faces of C a different

number k ik = 1, 2, 3,..., /■)•   Then let p. .ik) = the number of /-dimensional

faces of C  intersecting with the /-dimensional face of C  assigned the num-

ber k.   Then

/• /•

(4) a.. = ¿ (/. - p.fk)) = //; - Z Pifk).
k=l k=\

vri       unWe shall now prove

Theorem I.   // R  is the i-dimensional face of C  assigned the number

k (0 < i < d,   I <k < f.) then

(5) £(-l)'pi;U)V(-lK
7=0

Proof.   Construct around  R  a figure  Q   homeomorphic to the surface of

a ¿/-dimensional hypersphere and which contains exactly all the vertices of

R within its interior.   Then the intersection of the faces of C  with  Q    de-

fine a topological polytope, Q, of dimension  d.

Let

#  of /-dimensional faces of   R     if / < i,

r. =    1 if / = /,

0 itf>i,

I #   of /'-dimensional faces of g     if 0 < / < d - 1,

a   = I

(0 if / = - 1.

Then, since every /-dimensional face of  C  emanating from (intersecting but

not contained in)  R intersects  Q   in a (/ - l)-dimensional face of  Q, it is

not hard to see that for all 0 < / < d,

(6) p{j(k) = q._x + rf

Since   Q is a <i-dimensional topological polytope, and  R is an /-dimen-

sional one, by (2) we have
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d-\

£ i-i)'qr i + (m)«'-i= i-(-D¿,
7=0

(7) é •   1 ¿
£2 2-2 Í2

Y(-lp7.= r  (-l)>r. + (-l)< +    V    0=1.

7=0 7=0 7=2 + 1

Then, by (6) and (7), (5) is true.   Q.E.D.

Theorem II.   </}(£?) = X2iM) - xiM).

Proof.   From (3) and (4),

(8) .fAQ = ¿ ¿ (- i)-V¿/y - Z ¿ ¿ (- 1)¿+^Z,U).
2=0   7=0 2=0 7=0 fc=l

From(l) we get

(d \2 d      d

i=0 / í=0 7=0

And by (5) and (1)

II¿(- ir%u) --£<-*>* ¿ £ (- i)'p!;u) = (- d¿x(m),
7=0  ;'=0  k=\ 2=0 &=1    ; = 0

so that (8) becomes  if/iO = y2iM) - (- l^X^-   And> since  X^ = °  when"

ever d is odd ip(£) = X2(/M) - X(M).   Q.E.D.

Corollary.   // C   is the boundary complex of a id + l)-dimensional polytope,

0(0 = i + (- i)d.
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