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ON 4-FREE INTEGERS WITH SMALL PRIME FACTORS

D. G. HAZLEWOOD

ABSTRACT. The object of this note is to give a nontrivial lower esti-
mate for the function tllk(x, y; h), defined to be the number of k-free inte-
gers m such that 1<m<x, (m, k)= 1, and m has no prime factor greater

than or equal to y.

Let k> 2 be a fixed natural number and let pk(n) denote the multiplica-

tive function given for powers of an arbitrary prime p by

1, a=0
(1) w69 ={-1, a=4

0, otherwise.

Let » be a natural number, x> 0, y > 2 be real numbers and let /k(") =
Edln,uk(a’). Let p(n) denote the largest prime factor of 7 with p(1) = 1. Then

the sum

(2) '70]&("7 Ys h) = z fk(n)

n<x;p(n)<y;(n,h)=1

denotes the number of k-free (having no kth power divisors) natural numbers
less than x, relatively prime to 5, and free of prime factors greater than or
equal to y.

Now we let ¢ be a real number such that x = y* and ¢ = log x/log y. The
purpose of this note is to present a lower bound for l,//k(yt, y; B, using only

elementary methods, which has very few restrictions on y, ¢, and .

Theorem. Let t > 3. Givent, there exists a real number ¥, = yl(t) such
that

=1 t
B Ghy D210 ] =07\ expi—#(log t + log log ¢ + (1)}

for each y >y, and b <(log y)C for some absolute constant C, where
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log log ¢ 4 4 log t
+ +
log ¢ log ¢ t

4) n(e) = l—(log log t+ 1~

log ¢
and ((k) is Riemann’s zeta function.

For comparison, we note that as a consequence of the remark on p. 199
and Theorem 3.2.4 of Levin and Fainleib [5]

RSO
5) lim - z =1
N o { (St WA
p|h\1 - p~% ] LB

for t < (log y)3/5= 58> 0, h<(log Y, C an absolute constant, where Z(?)
satisfies de Bruijn’s differential-difference equation tZ'(¢) = ~Z(t - 1) with

initial condition Z(#) = 1 for 0 <t < 1. In particular,
Z(1) = expl—t{log t + log log ¢t + o(1))}

as t approaches oo.
We can also state a comparable upper bound with the restricted range,

e<t<y/elogy, h<y, using the proof of Theorem 3 of [4] with g(n) =1, (0)/n:
VRO

(6) -1
1 -
< H(__p__) H (1- p"k)y‘ expi-t log ¢ - t log log t + n(t, y)}
o|h

1-p7%) <y

where

log log ¢ 1 (¢ log )2
D pyp=1{1-26%" ¢ + Ollog log y) + o —22 ).
log ¢ log ¢ ylogy

Throughout the discussion, the constants implied by the use of the O-nota-

tion are absolute.

In order to prove the Theorem, we use essentially the method of Halber-
stam [1] and [3] together with an estimate for Q,(x; b), the number of k-free
natural numbers less than x that are relatively prime to 5, and a generaliza-
tion of the Buchstab identity.

We note that

x 1-p-! d(h)
Q.(x; b)) = — T i VVRI T v (h) v(b)
(3) Q,(x; h) D) plllh <1 —p‘>+ ( p 2 > + 0(47(h))

where &(h) is Euler’s totient function and v(h) denotes the number of dis-
tinct prime factors of A, by the following argument:
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Using the first line of the proof of Theorem 3.1 in Harris and Subbarao [2]
0= 2 @ X 1

d<x;(d,h)=1 n<x/d;(n,h)=1
so that
q’)(h) x
0 h - Y p@EEZ ol
d<x;(d,h)=1 d

The leading term of (8) follows from the Harris-Subbarao argument. The error term

-ol2"® ¥ uid)=ol2v® X 1
d<x;(d,bh)=1 d<x1/ky(d,p)=1

= o(zv(h)gﬂfz xl/k+ O(Z’IJ(’J))}> _ O(Zv(h)?%}le/k) + O(4v(”)) )
h

We also remark that if 0 < x <y, then
©) ale, 5 ) = 0,0 A,

As for the generalization of the Buchstab identity, we let A denote a
nonempty finite set of natural numbers and define

(10) G(A, y, g = > gl@, g multiplicative,
aeA;p(a)<y

then

11 Gl v 2 — (P )G(A ) ) < <
4 _18 D> 8)s 2 1 u
( ) (A’ U, g) - G(A, v, g) { <p<u m m

0, otherwise,
where

(12) A = {-;17 ja€d, a=0 (mod p™), a#0 (mod pm+l)}.
pm

In view of [1] and [3], we will omit the proof of (11).

Now we state the first of 2 lemmas needed to prove the Theorem.

Lemma 1. If t is a real number such that 1 < t<2 and b is a natural

number, then

p~ '\ 4¥™ 1og log 3h
Y g log
b 1-1 o\ ———);-
S )>R< )C(k)g og t+ ( os 7 )i

Proof. We take A ={n|1<n<y% (n, =1} u=y", v=1y, and gln) =
/k(”) in (11) so that by (8) and (9), we have

l—p"1 y* P(h)
(v ye b) = t/k v(h)
SARa prll,,(l - p—k>é(k) * O(y h ? )

t
voar - 3 o (2p),
y<b<ytipfh p
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since y<p<y' and 1<t<2 imply y'/p< p.

Hence

1-p7'\ y 1 /2 B0 )
LA 1- = o) t/k T v(h)
¢k(y P 3|-I”< )é(k)g y<p<§;ﬂh p i ' <y b i

+ 0(41/(};)) + O( t/k ‘f’}(’ h) 7v(b) p—l/k) + 0(41/(1»)”(),:))

(14) v<b<ylinfh

- P_l y* g 1 ( v(b) y* )
= 1- — 4
H)( —k){(k) y5p<§;p*bp} log y

Now, as in [3], we observe that

Z -}--loglogx+(3—zl O(l +V_(.}2)
p<x,p/tb P’bp logx X

Thus with 1 <t<2

1-p71\ ¥ O
vyt y D= TI|—— 4 1-logt+0 L, v(B- 47" log log 3h)
p|h C(k) log y y log y
1-p~ t 4V(h)l 1 3h
= [I{ — ) 31—10gt+0( _cg e\
p[p\1-p* £(R) log y

to complete the proof of the lemma.
47(h)

Due to the factor in the error term, we are forced to restrict » by

the condition
(15) h< (log y)C

for an absolute constant C.

Now we define

-1 t -1
(16) 1\ Xy ;h = Y , ;b
o (M,(l_ ”‘)4(k)> Faln 7B

and state Lemma 2, whose proof is almost identical to that of Lemma 3 of [3]

and so will be omitted.
Lemma 2. Let & be a number satisfying

17) 0<58<1/3.

For each natural number n, there exists a number y, = yl(n, 8) such that if

1/3<t<n(1 =38), then
(18) Ak(y‘, y; h) > (2/nN)8n-1
for y>y, and h< (log )¢ where C is an absolute constant.

The proof of the Theorem follows from Lemma 2 by a suitable choice of
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n and O in terms of ¢, namely n=[(z + 1)/(1 - 8)] and & = 1/(2 + log(z+ 1))
(see Halberstam [1]).
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