ON k-FREE INTEGERS WITH SMALL PRIME FACTORS

D. G. HAZLEWOOD

ABSTRACT. The object of this note is to give a nontrivial lower estimate for the function $\psi_k(x, y; h)$, defined to be the number of k-free integers m such that $1 \le m < x$, (m, h) = 1, and m has no prime factor greater than or equal to y.

Let $k \ge 2$ be a fixed natural number and let $\mu_k(n)$ denote the multiplicative function given for powers of an arbitrary prime p by

(1)
$$\mu_{k}(p^{a}) = \begin{cases} 1, & a = 0, \\ -1, & a = k, \\ 0, & \text{otherwise.} \end{cases}$$

Let h be a natural number, x > 0, $y \ge 2$ be real numbers and let $f_k(n) = \sum_{d \mid n} \mu_k(d)$. Let p(n) denote the largest prime factor of n with p(1) = 1. Then the sum

(2)
$$\psi_k(x, y; h) = \sum_{n < x : p(n) < y : (n, h) = 1} f_k(n)$$

denotes the number of k-free (having no kth power divisors) natural numbers less than x, relatively prime to h, and free of prime factors greater than or equal to y.

Now we let t be a real number such that $x = y^t$ and $t = \log x/\log y$. The purpose of this note is to present a lower bound for $\psi_k(y^t, y; h)$, using only elementary methods, which has very few restrictions on y, t, and h.

Theorem. Let $t \ge 3$. Given t, there exists a real number $y_1 = y_1(t)$ such that

(3)
$$\psi_{k}(y^{t}, y; h) \geq 2e^{-10} \prod_{p|h} \left(\frac{1-p^{-1}}{1-p^{-k}}\right) \frac{y^{t}}{\zeta(k)} \exp\{-t(\log t + \log \log t + \eta(t))\}$$

for each $y \ge y_1$ and $h \le (\log y)^C$ for some absolute constant C, where

Received by the editors May 13, 1974 and, in revised form, July 15, 1974. AMS (MOS) subject classifications (1970). Primary 10-02, 10H15, 10H20. Key words and phrases. Numbers with small prime factors, k-free integers, Buchstab identity.

(4)
$$\eta(t) = \frac{1}{\log t} \left(\log \log t + 1 - \frac{\log \log t}{\log t} + \frac{4}{\log t} + \frac{4 \log t}{t} \right)$$

and $\zeta(k)$ is Riemann's zeta function.

For comparison, we note that as a consequence of the remark on p. 199 and Theorem 3.2.4 of Levin and Fainleib [5]

(5)
$$\lim_{y \to \infty} \frac{\psi_k(y^t, y; h)}{\prod_{p \mid h} \left(\frac{1 - p^{-1}}{1 - p^{-k}}\right) \frac{y^t}{\zeta(k)} Z(t)} = 1$$

for $t \le (\log y)^{3/5-\delta}$, $\delta > 0$, $h \le (\log y)^C$, C an absolute constant, where Z(t) satisfies de Bruijn's differential-difference equation tZ'(t) = -Z(t-1) with initial condition Z(t) = 1 for $0 \le t \le 1$. In particular,

$$Z(t) = \exp\{-t(\log t + \log \log t + o(1))\}$$

as t approaches ∞ .

We can also state a comparable upper bound with the restricted range, $e < t < y/e \log y$, $h \le y$, using the proof of Theorem 3 of [4] with $g(n) = \int_{\mathbf{k}} (n)/n$:

(6)
$$\psi_{k}(y^{t}, y; h) \leq \prod_{p|h} \left(\frac{1-p^{-1}}{1-p^{-k}}\right) \prod_{p < y} (1-p^{-k}) y^{t} \exp\{-t \log t - t \log \log t + \eta(t, y)\}$$

where

(7)
$$\eta(t, y) = t \left\{ 1 - \frac{\log \log t}{\log t} + O\left(\frac{1}{\log t}\right) \right\} + O(\log \log y) + O\left(\frac{(t \log t)^2}{y \log y}\right).$$

Throughout the discussion, the constants implied by the use of the O-notation are absolute.

In order to prove the Theorem, we use essentially the method of Halber-stam [1] and [3] together with an estimate for $Q_k(x; h)$, the number of k-free natural numbers less than x that are relatively prime to h, and a generalization of the Buchstab identity.

We note that

(8)
$$Q_{k}(x; h) = \frac{x}{\zeta(k)} \prod_{p|h} \left(\frac{1 - p^{-1}}{1 - p^{-k}} \right) + O\left(x^{1/k} \frac{\phi(h)}{h} - 2^{\nu(h)} \right) + O(4^{\nu(h)})$$

where $\phi(h)$ is Euler's totient function and $\nu(h)$ denotes the number of distinct prime factors of h, by the following argument:

Using the first line of the proof of Theorem 3.1 in Harris and Subbarao [2]

$$Q_k(x, h) = \sum_{d < x; (d,h)=1} \mu_k(d) \sum_{n < x/d; (n,h)=1} 1$$

so that

$$Q_{k}(x; h) = \sum_{d < x; (d,h) = 1} \mu_{k}(d) \left\{ \frac{\phi(h)}{h} \frac{x}{d} + O(2^{\nu(h)}) \right\}.$$

The leading term of (8) follows from the Harris-Subbarao argument. The error term

$$= O\left(2^{\nu(h)} \sum_{d < x; (d,h)=1} \mu_k^2(d)\right) = O\left(2^{\nu(h)} \sum_{d < x^{1/k}; (d,h)=1} 1\right)$$

$$= O\left(2^{\nu(h)} \left\{ \frac{\phi(h)}{h} x^{1/k} + O(2^{\nu(h)}) \right\} \right) = O\left(2^{\nu(h)} \frac{\phi(h)}{h} x^{1/k}\right) + O(4^{\nu(h)}).$$

We also remark that if $0 \le x \le y$, then

(9)
$$\psi_{k}(x, y; h) = Q_{k}(x; h).$$

As for the generalization of the Buchstab identity, we let A denote a nonempty finite set of natural numbers and define

(10)
$$G(A, y, g) = \sum_{a \in A; p(a) < y} g(a), \quad g \text{ multiplicative},$$

then

(11)
$$G(A, u, g) - G(A, v, g) = \begin{cases} \sum_{v \le p < u} \sum_{m=1}^{\infty} g(p^m) G(A_{p^m}, p, g), & 2 \le v \le u, \\ 0, & \text{otherwise,} \end{cases}$$

where

(12)
$$A_{p^m} = \left\{ \frac{a}{p^m} \mid a \in A, \ a \equiv 0 \pmod{p^m}, \ a \not\equiv 0 \pmod{p^{m+1}} \right\}.$$

In view of [1] and [3], we will omit the proof of (11).

Now we state the first of 2 lemmas needed to prove the Theorem.

Lemma 1. If t is a real number such that $1 \le t \le 2$ and h is a natural number, then

$$\psi_{k}(y^{t}, y; h) \geq \prod_{p \mid h} \left(\frac{1 - p^{-1}}{1 - p^{-k}} \right) \frac{y^{t}}{\zeta(k)} \left\{ 1 - \log t + O\left(\frac{4^{\nu(h)} \log \log 3h}{\log y} \right) \right\}.$$

Proof. We take $A = \{n | 1 \le n < y^t, (n, h) = 1\}, u = y^t, v = y, and <math>g(n) = f_k(n)$ in (11) so that by (8) and (9), we have

$$\begin{split} \psi_k(y^t, \; y; \; h) &= \prod_{p \mid h} \left(\frac{1 - p^{-1}}{1 - p^{-k}} \right) \frac{y^t}{\zeta(k)} + O\left(y^{t/k} \, \frac{\phi(h)}{h} \, 2^{\nu(h)} \right) \\ &+ O(4^{\nu(h)}) - \sum_{y \leq p < y^t; \, p \nmid h} \mathcal{Q}_k\left(\frac{y^t}{p}; \; h \right), \end{split}$$

since $y \le p < y^t$ and $1 < t \le 2$ imply $y^t/p \le p$.

Hence

$$\psi_{k}(y^{t}, y; h) = \prod_{p \mid h} \left(\frac{1 - p^{-1}}{1 - p^{-k}}\right) \frac{y^{t}}{\zeta(k)} \left\{ 1 - \sum_{y \leq p < y^{t}; p \nmid h} \frac{1}{p} \right\} + O\left(y^{t/k} \frac{\phi(h)}{h} 2^{\nu(h)}\right) + O\left(y^{t/k} \frac{\phi(h)}{h} 2^{\nu(h)} \sum_{y \leq p < y^{t}; p \nmid h} p^{-1/k}\right) + O\left(4^{\nu(h)}\pi(y^{t})\right)$$

$$= \prod_{p \mid h} \left(\frac{1 - p^{-1}}{1 - p^{-k}}\right) \frac{y^{t}}{\zeta(k)} \left\{ 1 - \sum_{y \leq p < y^{t}; p \nmid h} \frac{1}{p} \right\} + O\left(4^{\nu(h)} \frac{y^{t}}{\log y}\right).$$

Now, as in [3], we observe that

$$\sum_{p < x; p \nmid h} \frac{1}{p} = \log \log x + \left(B - \sum_{p \mid h} \frac{1}{p}\right) + O\left(\frac{1}{\log x} + \frac{\nu(h)}{x}\right).$$

Thus with $1 \le t \le 2$

$$\begin{split} \psi_{k}(y^{t}, y; h) &= \prod_{p|h} \left(\frac{1 - p^{-1}}{1 - p^{-k}} \right) \frac{y^{t}}{\zeta(k)} \left\{ 1 - \log t + O\left(\frac{1}{\log y} + \frac{\nu(h)}{y} + \frac{4^{\nu(h)} \log \log 3h}{\log y} \right) \right\} \\ &= \prod_{p|h} \left(\frac{1 - p^{-1}}{1 - p^{-k}} \right) \frac{y^{t}}{\zeta(k)} \left\{ 1 - \log t + O\left(\frac{4^{\nu(h)} \log \log 3h}{\log y} \right) \right\}, \end{split}$$

to complete the proof of the lemma.

Due to the factor $4^{\nu(h)}$ in the error term, we are forced to restrict h by the condition

$$(15) h < (\log y)^C$$

for an absolute constant C.

Now we define

(16)
$$\Lambda_{k}(x, y; h) = \left(\prod_{p \mid h} \left(\frac{1 - p^{-1}}{1 - p^{-k}} \right) \frac{y^{t}}{\zeta(k)} \right)^{-1} \psi_{k}(x, y; h)$$

and state Lemma 2, whose proof is almost identical to that of Lemma 3 of [3] and so will be omitted.

Lemma 2. Let δ be a number satisfying

(17)
$$0 < \delta < 1/3$$
.

For each natural number n, there exists a number $y_1 = y_1(n, \delta)$ such that if $1/3 < t \le n(1-\delta)$, then

(18)
$$\Lambda_{L}(y^{t}, y; h) \geq (2/n!)\delta^{n-1}$$

for $y \ge y_1$ and $h \le (\log y)^C$ where C is an absolute constant.

The proof of the Theorem follows from Lemma 2 by a suitable choice of

n and δ in terms of t, namely $n = [(t+1)/(1-\delta)]$ and $\delta = 1/(2 + \log(t+1))$ (see Halberstam [1]).

REFERENCES

- 1. H. Halberstam, On integers all of whose prime factors are small, Proc. London Math. Soc. (3) 21 (1970), 102-107. MR 42 #4509.
- 2. V. C. Harris and M. V. Subbarao, An arithmetic sum with an application to quasi-k-free integers, J. Austral. Math. Soc. 15 (1973), 272-278. MR 48 #8363.
- 3. D. G. Hazlewood, On integers all of whose prime factors are small, Bull. London Math. Soc. 5 (1973), 159-163.
- 4. ———, Sums over positive integers with few prime factors, J. Number Theory 7 (1975), 189-207.
- 5. B. V. Levin and A. S. Fainleib, Application of certain integral equations to questions of the theory of numbers, Uspehi Mat. Nauk 22 (1967), no. 3 (135), 119-197 = Russian Math. Surveys 22 (1967), no. 3, 119-204. MR 37 #5174.

DEPARTMENT OF MATHEMATICS, SOUTHWEST TEXAS STATE UNIVERSITY, SAN MARCOS, TEXAS 78666