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AN ELEMENTARY METHOD FOR ESTIMATING

ERROR TERMS IN ADDITIVE NUMBER THEORY1

ELMER K. HAYASHI

ABSTRACT.   Let  R An)  denote the number of ways of representing the

integers not exceeding n   as the sum of k  members of a given sequence of

nonnegative integers.   Using only elementary methods, we prove a general

theorem from which we deduce that, for every e > 0,

RkW- cJ 4 0(B/>U-/»>U-l/M/<l-^fcW)

where  c  is a positive constant and 0 < /3 < 1.

Let R An) denote the number of ways of representing the integers not ex-

ceeding  n as the sum of k members of a given sequence of nonnegative inte-

gers.   Jurkat [4] has shown that  R An) - G(n) 4 oin"   )  whenever  k is an

even integer,  0 < /3 < 2,  and  Gin)  is a logarithmico-exponential function with

Gin) - cn?, OO.  Randol [5] has shown that  Rfc(n) - c// 0(„Al-l/WU-/3/fe))

when  m = k/p  is an even integer, the given sequence of nonnegative integers
(    rn)°°

is the sequence \n   J      j,   and  c is the volume of the ^-dimensional solid de-

fined by y™ + y™ + • • • + ym < 1. The corollary to our first theorem improves

Jurkat's result in case  /S < (3& — 4)/(3zs - 3)  and comes surprisingly close to

Randol's result even though Randol's theorem deals only with a very special

case of ours.   In contrast to the methods employed by others on this type of

problem (see [1]— [6]), the techniques we use here are all elementary.

We begin by defining our notation.  Let \r^n)\   _Q be a sequence of non-

negative real numbers such that if r.in) ^ 0, then r^in) > 1. (The lower bound

1 is chosen for convenience; any positive lower bound would suffice.) If  k is

an integer,   k>2,  define  r.in)  by

n

(1) 7(w)= £ r1U1)...r1(mfe)=   y   r^m)rk_^n-m).

#,(72)  will denote the summatory function of  ^l(^)-   Thus

(2) Rkin) =   ±   rkim).

If  r^in)  is a nonnegative integer for all n,  we can interpret  r.in)  as the

number of occurrences of  n in a given sequence  }a   \ of nonnegative integers.
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In this case, rAn) denotes the number of ways ra can be represented as the

sum of k elements of the sequence (a \. It is interesting to note, however,

that the proofs of our theorems do not require r.(n) to be integer-valued.

Finally, define AG(ra) = G(n) - G(n - 1)  and A2G(n) = A(AG(ra)).  We write

/(ra) « g(ra)  when /(ra)  is less than a positive multiple of g(n)  for all suffi-

ciently large  ra.  Our main result is

Theorem 1. Let 0 < /3 < 1 - 8 < 1. // Rk(n) = G(n) + v(n), with v(n) =

o(G(n)), if ra/3« G(n) « ra1_S, and if A2G(ra) < 0 for all sufficiently large

n,  then for every e > 0  we have

v(n)f o(wS/3(l-l/fe)/(l-/3+/3/fe)_e)_

Proof.   By hypothesis, there exists  nQ > 0  such that  A  G(n) <0  for  ra>

raQ,  i.e.,  AG(n)   is nonincreasing for ra > raQ.  Thus for  n>nQ we have

(3) (n - raQ)AG(ra) <      £      AG(ttz) = G(ra) - G(nQ),
m —Ur. + 1

and hence

(4) AG(«) « G(n)/n.

Choose  x £ Z    such that  rXx + 1) f 0  and assume   2 < y < x,  where  y

is an integer to be specified later.  Since   R'An) ~ G(ra)  and  G(ra) —» °o  as

ra —> oo, there exist arbitrarily large ra for which r^n) 4 0. Hence x can be

taken arbitrarily large.  Using (2) and (1), we see that

x+y x+y m

Rk(x + y) - Rk(x) =     £      rfeU) =      £       L  rljh^m - j)
m=x + l m=x + l   ;=0

y-1
>7-j(x+l)    ^   rjfe_1(m) = r1(x+ l)Rfe_j(y- 1).

m=0

At first glance, the above estimate might seem to be rather crude. However,

since by hypothesis  G(ra) = o(n),   and hence   R An) = o(ra),   it follows that it

is very unlikely that  r.(n) f 0 for very many  ra between x and 2x.   Thus the

above estimate is good when  RSn)  is significantly smaller than  ra in magni-

tude.

For the moment, let us assume that we know

(5) RkJy)»(Rk(y))l-l/k.

Now using  G(n) » n     and recalling   R An) ~ G'(ra),   we obtain, for sufficiently

large y,

Rk(x + y) - Rk(x) » (Rk(y - l))l~1/k » (G(y - l))1"1^ » /d-l/«

On the other hand, if  v(n) = o(n  ),   then using the fact that AG(ra)  is nonin-
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creasing and applying (4), we get

R.ix + y) - Rk(x) = Gix + y) - G(x) + v(x + y) - v(x)

< yAG(x) + o(xa) « yG(x)/x + o(xa).

Thus we have, for sufficiently large  y,

(6) yP^-l/k'>«yGix)/x+oixa).

We now choose  y so that

(7) yG(x)/*=o(/(1-1/fe)),

say

y = [U/GU))1/(1-^/fe)-e],       e>0.

It is easily verified that y < x,  and when c is small,  y grows large with x.

With our choice of y, we see that a contradiction of (6) will occur if cl <

8f3(l - 1/7)/(l - /3 + /3//e),   since then for sufficiently small e   we have

xa < xS/3(l-l/fe)(V(l-/3+/3/'e)-t)

« (x/G(x))/3(1-1/fe)(1/(1-/3+^/fe)-° « yP(l-l/k\

The proof of the theorem will be complete if we can verify (5).  In fact we

shall show

(8) (Rk(y))k-1<(k-l)(Rk_l(y))k.

We write

(^(y))*-1-/        Z rlia1)...r1iak))k

\al + -+ak_y /

If we multiply out the right side of the last equation, we see that a typical

term of (R,(y))k-1  is  n*ljjn*   , r.(a..)\,  where 2*      a.. <y for  i = 1, 2,

• • • , k - 1. Now

*-l    k k-l

Z Z %• < Z y = <* - %•
;=1 y = i ,-=i

fe-i
It follows that for some   t < k — 1  we have 2 ._. a .   < y,   and for   z = 1, • • • ,

k b z — 1      ZZ        "

k - 1, we clearly have i .   .   ./   a.. < 2 .   . fl .. < y.  Thus
■* 1 = 1,it t    lj —     ; = 1     i; — y

n 'i^j n    n /,(•<,>(
m = l )   i=l   ( ,= 1;,*/ )

is a term of (^(je_1(y))  .  Hence each term of (R,(y))        occurs as a term of

t-1 ^     '  However, since  Z  could have any of  k - 1   different values, it

follows that we may have associated as many as, but no more than,   k—1

different terms of (Rj(y))k~1  with the same term of ^Pk_l(y))k-  Therefore

we have
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(8) (Rk(y))k-l<(k-l)(Rk_Ay))k.

This completes the proof of Theorem 1.

The constant  k — 1   in (8) is probably not best possible.  The correct

constant is most likely 1, but we have only been able to prove this in certain

special cases.  For example, if rf.n) = 1 for all ra,  then

(Rk(n))k~l = ((ra + l)(ra + 2) • • • (ra + k)/k\)k~l

= (1 + n/l)k-\l + ra/2)*"1 • • • (1 + n/k)k~l

< (1 + n/x)Kl + n/2)k • • • (1 + n/(k - l))k

= «ra + lXn +2)  • • •   (ra + k - l)/(k - l)0k

= (RkJ«))k.

Taking  8 = 1 — (3  in Theorem 1, we obtain the following

Corollary.  Let  0 < j8 < 1.  // Rfc(«) = G(n) + v(n) with v(n) = o(G(«)),

if G(n) ~ cra^  with c > 0,  and if A2G(ra) < 0 for all sufficiently large ra,

then for every e > 0,

v(n) 4 0(„/3(l-/3)(l-l/fe)/0-/3+/3/*)-<).

In our second theorem, we prove that even if very little is known about

the exact order of magnitude of G(n), we can still claim that  v(n) f= O(l).

Theorem 2.  // Rjfin) = G(n) + v(n) with v(n) - o(G(n)),  if G(n) = o(ra),

but G(n) —> oo as  ra —>oo, and if A G(n) < 0 for all sufficiently large ra, then

v(n)4 0(1).

Proof.  Suppose there exists  M > 0 such that  |f (n)| < M for all ra.   Re-

call that in the proof of Theorem 1, we showed that AG(ra) « G(n)/n is a con-

sequence of the hypothesis  A G(n) < 0 for all sufficiently large ra.  Since we

also have  G(ra) = o(n), we conclude  AG(n) = o(l). The hypotheses  R ,(n) ~

G(n) and  G(ra) —> oo as  ra —> oo guarantee that we have   t-,(«) f 0,  and hence

rj(ra) > 1, for infinitely many ra.  Thus there exist integers a and A  such that

R1(A)-R1(a)> 2M + 1. Choose  N so that r^N) f 0. Since  RAN)> 1,  we

have

2M+l<R1(A)-R1(a)=    ^     rAn) <     ^     rAn)(r AN))*-1.
n> n>A a<n<A

Using (1) and (2), we see that every term of the last sum is a term   of

Rk((k - 1)A/ + A) - Rk((k - 1)N + a). Since  N can be chosen arbitrarily large,

we therefore have
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2M + 1 < Rk((k - l)N + A) - RA(k - 1)N + a)

= G((k - DN + A) - G((k - 1)N +a) + v((k - l)N + A) - v((k - l)N+a)

<(A-a)AG(U-l)N + a) + 2M

= o(D + 2M    asN-«>.

The assumption v (ra) = 0(1) has led us to a contradiction.  Therefore we con-

clude v(n)f 0(1).

The author expresses his great appreciation to Dr. Paul T. Bateman for

his encouragement and many helpful suggestions during the preparation of

this paper.
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