AN ELEMENTARY METHOD FOR ESTIMATING ERROR TERMS IN ADDITIVE NUMBER THEORY ${ }^{1}$

ELMER K. HAYASHI

ABSTRACT. Let $R_{k}(n)$ denote the number of ways of representing the integers not exceeding n as the sum of k members of a given sequence of nonnegative integers. Using only elementary methods, we prove a general theorem from which we deduce that, for every $\epsilon>0$,

$$
R_{k}(n)-c n^{\beta} \neq o\left(n^{\beta(1-\beta)(1-1 / k) /(1-\beta+\beta / k)-\epsilon}\right)
$$

where c is a positive constant and $0<\beta<1$.
Let $R_{k}(n)$ denote the number of ways of representing the integers not exceeding n as the sum of k members of a given sequence of nonnegative integers. Jurkat [4] has shown that $R_{k}(n)-G(n) \neq o\left(n^{\beta / 4}\right)$ whenever k is an even integer, $0<\beta<2$, and $G(n)$ is a logarithmico-exponential function with $G(n) \sim c n^{\beta}, c>0$. Randol [5] has shown that $R_{k}(n)-c n^{\beta} \neq o\left(n^{\beta(1-1 / k)(1-\beta / k)}\right)$ when $m=k / \beta$ is an even integer, the given sequence of nonnegative integers is the sequence $\left\{n^{m}\right\}_{n=1}^{\infty}$, and c is the volume of the k-dimensional solid defined by $y_{1}^{m}+y_{2}^{m}+\cdots+y_{k}^{m} \leq 1$. The corollary to our first theorem improves Jurkat's result in case $\beta<(3 k-4) /(3 k-3)$ and comes surprisingly close to Randol's result even though Randol's theorem deals only with a very special case of ours. In contrast to the methods employed by others on this type of problem (see [1]-[6]), the techniques we use here are all elementary.

We begin by defining our notation. Let $\left\{r_{1}(n)\right\}_{n=0}^{\infty}$ be a sequence of nonnegative real numbers such that if $r_{1}(n) \neq 0$, then $r_{1}(n) \geq 1$. (The lower bound 1 is chosen for convenience; any positive lower bound would suffice.) If k is an integer, $k \geq 2$, define $r_{k}(n)$ by

$$
\begin{equation*}
r_{k}(n)=\sum_{m_{1}+\cdots+m_{k}=n} r_{1}\left(m_{1}\right) \cdots r_{1}\left(m_{k}\right)=\sum_{m=0}^{n} r_{1}(m) r_{k-1}(n-m) . \tag{1}
\end{equation*}
$$

$R_{k}(n)$ will denote the summatory function of $r_{k}(n)$. Thus

$$
\begin{equation*}
R_{k}(n)=\sum_{m=0}^{n} r_{k}(m) \tag{2}
\end{equation*}
$$

If $r_{1}(n)$ is a nonnegative integer for all n, we can interpret $r_{1}(n)$ as the number of occurrences of n in a given sequence $\left\{a_{m}\right\}$ of nonnegative integers.

[^0]In this case, $r_{k}(n)$ denotes the number of ways n can be represented as the sum of k elements of the sequence $\left\{a_{m}\right\}$. It is interesting to note, however, that the proofs of our theorems do not require $r_{1}(n)$ to be integer-valued.

Finally, define $\Delta G(n)=G(n)-G(n-1)$ and $\Delta^{2} G(n)=\Delta(\Delta G(n))$. We write $f(n) \ll g(n)$ when $f(n)$ is less than a positive multiple of $g(n)$ for all sufficiently large n. Our main result is

Theorem l. Let $0<\beta \leq 1-\delta<1$. If $R_{k}(n)=G(n)+v(n)$, with $v(n)=$ $o(G(n))$, if $n^{\beta} \ll G(n) \ll n^{1-\delta}$, and if $\Delta^{2} G(n) \leq 0$ for all sufficiently large n, then for every $\epsilon>0$ we have

$$
v(n) \neq o\left(n^{\delta \beta(1-1 / k) /(1-\beta+\beta / k)-\epsilon}\right) .
$$

Proof. By hypothesis, there exists $n_{0}>0$ such that $\Delta^{2} G(n) \leq 0$ for $n \geq$ n_{0}, i.e., $\Delta G(n)$ is nonincreasing for $n \geq n_{0}$. Thus for $n \geq n_{0}$ we have

$$
\begin{equation*}
\left(n-n_{0}\right) \Delta G(n) \leq \sum_{m=n_{0}+1}^{n} \Delta G(m)=G(n)-G\left(n_{0}\right), \tag{3}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\Delta G(n) \ll G(n) / n \tag{4}
\end{equation*}
$$

Choose $x \in Z^{+}$such that $r_{1}(x+1) \neq 0$ and assume $2<y<x$, where y is an integer to be specified later. Since $R_{k}(n) \sim G(n)$ and $G(n) \rightarrow \infty$ as $n \rightarrow \infty$, there exist arbitrarily large n for which $r_{1}(n) \neq 0$. Hence x can be taken arbitrarily large. Using (2) and (1), we see that

$$
\begin{aligned}
R_{k}(x+y)-R_{k}(x) & =\sum_{m=x+1}^{x+y} r_{k}(m)=\sum_{m=x+1}^{x+y} \sum_{j=0}^{m} r_{1}(j) r_{k-1}(m-j) \\
& \geq r_{1}(x+1) \sum_{m=0}^{y-1} r_{k-1}(m)=r_{1}(x+1) R_{k-1}(y-1) .
\end{aligned}
$$

At first glance, the above estimate might seem to be rather crude. However, since by hypothesis $G(n)=o(n)$, and hence $R_{k}(n)=o(n)$, it follows that it is very unlikely that $r_{1}(n) \neq 0$ for very many n between x and $2 x$. Thus the above estimate is good when $R_{k}(n)$ is significantly smaller than n in magnitude.

For the moment, let us assume that we know

$$
\begin{equation*}
R_{k-1}(y) \gg\left(R_{k}(y)\right)^{1-1 / k} . \tag{5}
\end{equation*}
$$

Now using $G(n) \gg n^{\beta}$ and recalling $R_{k}(n) \sim G(n)$, we obtain, for sufficiently large y,

$$
R_{k}(x+y)-R_{k}(x) \gg\left(R_{k}(y-1)\right)^{1-1 / k} \gg(G(y-1))^{1-1 / k} \gg y^{\beta(1-1 / k)} .
$$

On the other hand, if $v(n)=o\left(n^{\alpha}\right)$, then using the fact that $\Delta G(n)$ is nonin-
creasing and applying (4), we get

$$
\begin{aligned}
R_{k}(x+y)-R_{k}(x) & =G(x+y)-G(x)+v(x+y)-v(x) \\
& \leq y \sqcup G(x)+o\left(x^{\alpha}\right) \ll y G(x) / x+o\left(x^{\alpha}\right) .
\end{aligned}
$$

Thus we have, for sufficiently large y,

$$
\begin{equation*}
y^{\beta(1-1 / k)} \ll y G(x) / x+o\left(x^{\alpha}\right) . \tag{6}
\end{equation*}
$$

We now choose y so that

$$
\begin{equation*}
y G(x) / x=o\left(y^{\beta(1-1 / k)}\right), \tag{7}
\end{equation*}
$$

say

$$
y=\left[(x / G(x))^{1 /(1-\beta+\beta / k)-\epsilon}\right], \quad \epsilon>0
$$

It is easily verified that $y<x$, and when ϵ is small, y grows large with x. With our choice of y, we see that a contradiction of (6) will occur if $\alpha<$ $\delta \beta(1-1 / k) /(1-\beta+\beta / k)$, since then for sufficiently small ϵ we have

$$
\begin{aligned}
x^{\alpha} & \leq x^{\delta \beta(1-1 / k)(1 /(1-\beta+\beta / k)-\epsilon)} \\
& \ll(x / G(x))^{\beta(1-1 / k)(1 /(1-\beta+\beta / k)-\epsilon)} \ll y^{\beta(1-1 / k)} .
\end{aligned}
$$

The proof of the theorem will be complete if we can verify (5). In fact we shall show

$$
\begin{equation*}
\left(R_{k}(y)\right)^{k-1} \leq(k-1)\left(R_{k-1}(y)\right)^{k} \tag{8}
\end{equation*}
$$

We write

$$
\left(R_{k}(y)\right)^{k-1}=\left(\sum_{a_{1}+\cdots+a_{k-} y} r_{1}\left(a_{1}\right) \cdots r_{1}\left(a_{k}\right)\right)^{k-1}
$$

If we multiply out the right side of the last equation, we see that a typical term of $\left(R_{k}(y)\right)^{k-1}$ is $\Pi_{i=1}^{k-1}\left\{\Pi_{j=1}^{k} r_{1}\left(a_{i j}\right)\right\}$, where $\sum_{j=1}^{k} a_{i j} \leq y$ for $i=1,2$, $\cdots, k-1$. Now

$$
\sum_{i=1}^{k-1} \sum_{j=1}^{k} a_{i j} \leq \sum_{i=1}^{k-1} y=(k-1) y .
$$

It follows that for some $t \leq k-1$ we have $\sum_{i=1}^{k-1} a_{i t} \leq y$, and for $i=1, \cdots$, $k-1$, we clearly have $\sum_{j=1 ; j \neq t}^{k} a_{i j} \leq \sum_{j=1}^{k} a_{i j} \leq y$. Thus

$$
\left\{\prod_{m=1}^{k-1} r_{1}\left(a_{m t}\right)\right\} \prod_{i=1}^{k-1}\left\{\prod_{j=1 ; j \neq t}^{k} r_{1}\left(a_{i j}\right)\right\}
$$

is a term of $\left(R_{k-1}(y)\right)^{k}$. Hence each term of $\left(R_{k}(y)\right)^{k-1}$ occurs as a term of $\left(R_{k-1}(y)\right)^{k}$. However, since t could have any of $k-1$ different values, it follows that we may have associated as many as, but no more than, $k-1$ different terms of $\left(R_{k}(y)\right)^{k-1}$ with the same term of $\left(R_{k-1}(y)\right)^{k}$. Therefore we have

$$
\begin{equation*}
\left(R_{k}(y)\right)^{k-1} \leq(k-1)\left(R_{k-1}(y)\right)^{k} . \tag{8}
\end{equation*}
$$

This completes the proof of Theorem 1.
The constant $k-1$ in (8) is probably not best possible. The correct constant is most likely 1 , but we have only been able to prove this in certain special cases. For example, if $r_{1}(n)=1$ for all n, then

$$
\begin{aligned}
\left(R_{k}(n)\right)^{k-1} & =((n+1)(n+2) \cdots(n+k) / k!)^{k-1} \\
& =(1+n / 1)^{k-1}(1+n / 2)^{k-1} \cdots(1+n / k)^{k-1} \\
& \leq(1+n / 1)^{k}(1+n / 2)^{k} \cdots(1+n /(k-1))^{k} \\
& =((n+1)(n+2) \cdots(n+k-1) /(k-1)!)^{k} \\
& =\left(R_{k-1}(n)\right)^{k} .
\end{aligned}
$$

Taking $\delta=1-\beta$ in Theorem 1, we obtain the following
Corollary. Let $0<\beta<1$. If $R_{k}(n)=G(n)+v(n)$ with $v(n)=o(G(n))$, if $G(n) \sim c n^{\beta}$ with $c>0$, and if $\Delta^{2} G(n) \leq 0$ for all sufficiently large n, then for every $\epsilon>0$,

$$
v(n) \neq o\left(n^{\beta(1-\beta)(1-1 / k) /(1-\beta+\beta / k)-\epsilon}\right) .
$$

In our second theorem, we prove that even if very little is known about the exact order of magnitude of $G(n)$, we can still claim that $v(n) \neq O(1)$.

Theorem 2. If $R_{k}(n)=G(n)+v(n)$ with $v(n)=o(G(n))$, if $G(n)=o(n)$, but $G(n) \rightarrow \infty$ as $n \rightarrow \infty$, and if $\Delta^{2} G(n) \leq 0$ for all sufficiently large n, then $v(n) \neq O(1)$.

Proof. Suppose there exists $M>0$ such that $|v(n)| \leq M$ for all n. Recall that in the proof of Theorem 1, we showed that $\Delta G(n) \ll G(n) / n$ is a consequence of the hypothesis $\Delta^{2} G(n) \leq 0$ for all sufficiently large n. Since we also have $G(n)=o(n)$, we conclude $\Delta G(n)=o(1)$. The hypotheses $R_{k}(n) \sim$ $G(n)$ and $G(n) \rightarrow \infty$ as $n \rightarrow \infty$ guarantee that we have $r_{1}(n) \neq 0$, and hence $r_{1}(n) \geq 1$, for infinitely many n. Thus there exist integers a and A such that $R_{1}(A)-R_{1}(a) \geq 2 M+1$. Choose N so that $r_{1}(N) \neq 0$. Since $R_{1}(N) \geq 1$, we have

$$
2 M+1 \leq R_{1}(A)-R_{1}(a)=\sum_{a<n \leq A} r_{1}(n) \leq \sum_{a<n \leq A} r_{1}(n)\left(r_{1}(N)\right)^{k-1} .
$$

Using (1) and (2), we see that every term of the last sum is a term of $R_{k}((k-1) N+A)-R_{k}((k-1) N+a)$. Since N can be chosen arbitrarily large, we therefore have

$$
\begin{aligned}
2 M+1 & \leq R_{k}((k-1) N+A)-R_{k}((k-1) N+a) \\
& =G((k-1) N+A)-G((k-1) N+a)+v((k-1) N+A)-v((k-1) N+a) \\
& \leq(A-a) \Delta G((k-1) N+a)+2 M \\
& =o(1)+2 M \text { as } N \rightarrow \infty .
\end{aligned}
$$

The assumption $v(n)=O(1)$ has led us to a contradiction. Therefore we conclude $v(n) \neq O(1)$.

The author expresses his great appreciation to Dr. Paul T. Bateman for his encouragement and many helpful suggestions during the preparation of this paper.

REFERENCES

1. P. T. Bateman, The Erdös-Fuchs theorem on the square of a power series (to appear).
2. P. T. Bateman, E. E. Kohlbecker and J. P. Tull, On a theorem of Erdös and Fuchs in additive number theory, Proc. Amer. Math. Soc. 14. (1963), 278-284. MR 26 \#2417.
3. P. Erdös and W. H. J. Fuchs, On a problem of additive number theory, J. London Math. Soc. 31 (1956), 67-73. MR 17, 586.
4. W. Jurkat, (to appear).
5. B. Randol, A lattice-point problem. II, Trans. Amer. Math. Soc. 125 (1966), 101-113. MR 34 \# 1292.
6. R. C. Vaughan, On the addition of sequences of integers, J. Number Theory 4 (1972), 1-16. MR 44 \#529 1.

DEPARTMENT OF MATHEMATICS, WAKE FOREST UNIVERSITY, WINSTON-SALEM, NORTH CAROLINA 27109

[^0]: Received by the editors June 21, 1974.
 AMS (MOS) subject classifications (1970). Primary 10J99.
 ${ }^{1}$ This paper is, with minor changes, part of the author's Ph.D. dissertation, written at the University of Illinois, Urbana, under the direction of Professor Paul T. Bateman.

