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ON A UBIQUITOUS CARDINAL1

STEPHEN H. HECHLER

ABSTRACT.  We consider five combinatorial or topological structures,

each with a certain   associated minimal  cardinal, and we show that these

cardinals are always equal even though it is independent of the axioms of

set theory as to just what the value of this common cardinal is.   The five

structures are the set of functions from zV  (the set of natural numbers)

into N under two partial orderings, the rational numbers with respect to

closed embeddings into powers of N, a certain subset of /SV — N with

respect to clopen decompositions, the irrationals with respect to compact

decompositions, and a subclass of the Borel sets with respect to closed

decompositions.   The proofs presented do not require a knowledge of forcing

techniques.

In this paper we shall consider five different topological or combinato-

rial structures and certain minimal cardinals associated with each of these.

We shall show that although it is consistent with the axioms of Zermelo-

Fraenkel set theory that any one of these cardinals takes on any value less

than or equal to c  (the cardinality of the continuum) subject only to the

restriction that it have uncountable cofinality, the five cardinals in question

are, nevertheless, always equal.   While we shall refer to independence proofs

elsewhere, we shall not deal with any here, and, in particular, we shall not

use forcing techniques.

The five structures and their associated cardinals are:

1.   Let N  be the set of natural numbers, and let     N  be the set of
N

functions from zV  into N.   We define partial orderings <.   and <2   on     N  by

setting:

(1) /<, g <-> Vn[fin) < gin)],

(2) f<2g~  Jk^n > *[/(») < <?(«)!>

and for  z = 1, 2  we define a set § C NN  to be an  i-scale iff / £    N—>

3g £o[/<, g].   Finally, we define Kj  to be the least cardinal   k  such that there

exists an z'-scale of cardinality k.

Lemma.   The cardinals K:   and K.   are always equal.

Proof.   Clearly, any 1-scale is a 2-scale, and if o is any 2-scale, then
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J = {/: 3g £ §[{«: f(n) 4 g(n)\ is finite]!

is a 1-scale of cardinality equal to that of v.    D

We shall refer to this cardinal as K..

2. Let N  be the space obtained by putting the discrete topology on  zV,

for any cardinal k, let NK be the topological product of k copies of N, and

let Q be the space consisting of the rational numbers with the inherited

topology.   Then it is known [5], [10] that  Q   can be embedded as a

closed subset of NK tot large enough k.   Let K    be the smallest such

cardinal.

3. Let /3N   be the Stone-Cech compactification of N, and let A be

the family of clopen subsets of /3N - N.   It is well known that £ is a base

for the topology of /3N - N, so, following Negrepontis [ll], it is reasonable

to define the type of an open set U C /3N - N  to be the smallest cardinal k

tot which there exists a family   U C J~> of cardinality k  such that \J\i = U.

It should be noted that since the members of m ate compact, any clopen cover

of an open set of infinite type admits a subcover of cardinality equal to the

type of the covered set.   Now let S  be an open set of the simplest infinite

type, namely of type N..   It is easily seen that not only are any two sets of

this type homeomorphic, but such a homeomorphism can always be found

which is induced by a permutation of N  and which, therefore, can be

extended to all of /3N - N.      So S  is, in a strong sense, unique, and thus

so is its exterior (the interior of its complement).   Let K    be the type of

the exterior of S.

4. Let I be the space consisting of the irrational numbers with the

inherited topology, and let C  be the family of compact subsets of I.   Note

that a set belongs to C  iff it is closed, bounded, and remains closed when

considered as a subset of the real line.   Define K .   to be the smallest
4

cardinal k for which there exists a family J Cl of cardinality k whicl

covers I.

5. Let R be the real line with the usual topology, and let F and G

be the families of closed and open subsets of R respectively.   Then define

a set to be an elementary Borel set iff it can be obtained from F or G by

a finite sequence of the operations, countable union and countable intersection.

Thus a set is elementary Borel iff it is in one of the classes F, G, F , Gs,

^o-S' ^$0-' ^o-Srr' "" '   where the indices are all finite.   Define K5   to be

the smallest cardinal k  such that every elementary Borel set can be ex-

2
In fact, M. E. Rudin [12] has shown that given the continuum hypothesis any

homeomorphism between two such sets can be extended to all of /3N — N.   For

details and generalizations see also [3].
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pressed as a union of k closed sets.   We note that since every closed subset

of R  is a countable union of compact subsets, we may replace "closed" by

"compact" in this definition.

Although these cardinals appear, for the most part, to be quite unrelated,

we show that this is far from the case. In fact, our main theorem, which we

prove next, tells us that they are all equal.

Theorem 1.   The cardinals K1t K , K , K , and K    are all equal.

Proof.   The proof that K. = K,   can be found in [8], and the proof that

K    = K    is given in [5].   Here we shall prove K1 = K .   and K . < K    < K1.

We begin by proving K. = K    using the well-known fact that I  is

homeomorphic to N   .   This allows us to think of the points of I as functions

from N  into zV.   For each n £ N let 77    be the projection function from N

onto the nth term of the product.   Now suppose that C is any compact sub-

set of N   .   Then for each n £ N the image rr [C] of C under 77    must be

compact and, therefore, finite.   Thus for each set C £ C  we may define a

function  fc £    N  by setting fcin) = max(77n[C]).   Similarly, for each func-

tion f £    N  we may define a compact set  C. £ C  by  C. = {g £ N   :  g <   f\.

But now it is easily seen that if  U C L  is a cover of N    , then  {fc: C £ 11 j

is a 1-scale, while if 5 is any 1-scale, then iC.: f £ o\ is a cover of N   .

We are greatly indebted to S. Mrowka for suggesting that we consider this

characterization of I  and its combinatorial consequences.

Since I  is a  Gg   set, and since any subset of I   which is closed in  R

is a countable union of compact subsets of I, it is clear that K. < K  .    To

prove K    < K     we require a technique used by Chambers [l] to deal with

certain uncountable arrays.   We, however,  shall apply it to countable arrays,

but because ours will be an induction proof, we shall, in effect, use it

infinitely many times.

To carry out our proof, we note that since an open set is also an F^

set, we need only consider the classes F, F^, F   g, F^g   , etc., and it

is also clear that we need not worry about classes Fa where the last

term in a is a.   We shall, therefore, carry out our induction of the number

n  of occurrences of 8  in  a.   The theorem is true for  n = 0, so suppose it

is true for n < k, and consider a set A  in the class F    t  where a is
—     ' aero

either empty or a string of 2k   symbols the last of which is 8.   Then we

may write

a = n u p;.
ieN jeN

where each  F\  is an  F„ set.   Furthermore, since Borel classes are all closed
; a

under finite unions, we may assume that for any  i, j, k £ N  we have Fl. C

F1.  , .   Thus, if for each point p £ A  we define a function /    by setting f Ai)

= mini/: p £ F1], we have
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/   <   p _> pe H   F{....ip -l s f      i  I      g(,)
zeN

Next, let S be any 1-scale of cardinality  Kj.   Then from the above, we see

that

* - u n Fi(zv
geS zeN

and for each function g 6o we define F   = \)eN F1 ,y   Since each F1 ...

is an Fa set, and the last symbol in a (if a is not empty) is a 8, each F

is also an Fa set.   But now, by the induction hypothesis, each  F    is a union

of K,   closed sets, and, therefore, so is A.     □

Since we have now shown them to be equal, we shall use K  to denote all

of the K..   We next consider the possible values K  can take on.   Obviously,

K  cannot be greater than  c, and by looking at 2-scales, we show that it must

have uncountable cofinality (i.e. that it cannot be expressed as a countable

union of smaller cardinals).

Theorem 2.   // any 2-scale o  is decomposed into a countable collection

\o   C o: n £ N] of not necessarily disjoint pieces, then at least one of the

o    must itself be a 2-scale.
n >

Proof.   Suppose otherwise.   Then for each n £ N there is a function

f    £    N  such that for no g £ a     is it the case that  /   <, g.   Now define a
'« a n 'n     2  °

function / by setting f(n) = X?_,/.(«).   Clearly, there cannot exist a function

g £ a  such that / <- g.    □

Corollary.    The cofinality of K must be greater than   Kn-     □

However, this is just about all we can say definitely about K.   Else-

where [8], we have proven

Theorem 3.   It is consistent with the axioms of Zermelo-Fraenkel set

theory that K  be any cardinal of uncountable cofinality which is less than

or equal to  c.     □

In particular, in Solovay's [13] models in which random reals are used

it is known that K is equal to   N,, while in Cohen's [2] models containing

generic reals and in models where Martin's Axiom [9] holds, K is equal to

c.   For more on the possible structure of 2-scales see [7], and for discussions

of various related cardinals see [6] and [14].

We conclude with two open problems.

Problem 1.   Can our results on elementary Borel sets be extended to

all Borel sets?     S. Shelah in a private communication has shown that they

can be if K  is less than   K^, but nothing is known for larger K.

Problem 2.   Let K* be the number of nowhere dense sets needed to
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cover R.   Then since each member of C is nowhere dense in R, we have

K*<K+   N0=K.   DoesK*=K?   If not, can K* have cofinality   NQ?   (For

independence results concerning K* see [4].)
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