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A GENERALIZATION OF ABSOLUTE RETRACTS

JOHN R. MARTINI

ABSTRACT.    In this paper the concept of an absolute  retract is

generalized to a new concept which we call an absolute approximate

retract.  It is shown that for the class of compact metric spaces, the

class of absolute approximate retracts contains the class of absolute re-

tracts and lies in the class of contractible Peano continua.

1. Notation.  All topological spaces considered in this paper will be

Hausdorff spaces. The symbol Q  shall be used to denote one of the follow-

ing classes of spaces:   compact metric, separable metric, metric, compact,

regular Lindelof, fully normal.  Definitions for these spaces may be found

in [2] and we shall adopt the notation used in [2].  In particular, we shall

let AR(Q) (respectively ANR(Q)) denote the class of absolute (neighborhood)

retracts relative to Q.

The closure of a subset A  of a topological space shall be denoted by

Cl A.

2. Approximate retracts.

Definition.   A subset A  of a space X is called an approximate retract

of X if for every neighborhood U of A  in X there is a retract R  of X  such

that A CRCU.

The following two lemmas show that an approximate retract of a contin-

uum is itself a continuum.

Lemma 1.  An approximate retract of a Hausdorff space X  is closed

in X.

Proof. Let A  be an approximate retract of a Hausdorff space X. Sup-

pose A  is not closed in X.  Let p £ Cl A - A.  Then there is a retract R

of X such that A C R C X - \p\.  Since R must be closed in X [l, p. 10], it

follows that p £ R.  This contradiction shows that A   is closed in X.

Lemma 2.  An approximate retract of a connected normal space is con-

nected.

Proof.   Let A   be an approximate retract of a connected normal space X.
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Suppose A  is not connected.  By Lemma 1, A  is closed in X. Hence there

exists two disjoint nonempty closed subsets A,> A2  m ^  such that A =

Aj U A2. Since X is normal, there exist disjoint open sets   (J.   and U    in

X  such that Aj C Ux   and A2 C UT Let U = UjU U2 .Then there is a re-

tract R  of X  such that A CRCU.  But R = (R O L/j) U (R Of/ ), which con-

tradicts the fact that a retract of a connected space is connected.  Therefore

A  must be connected.

Examples.  (1) Let X denote the closure of the curve in the plane E

whose equation is given by y = sin x~   ,   0 < x < l/rr. It is easy to see that

every neighborhood of X in E    contains an AR (compact metric)-space which

contains X, and hence X is an approximate retract of E  .  Thus, unlike the

case for retracts of E   , a compact approximate retract of the plane need not

be locally connected or even arcwise connected.

(2) S. Kinoshita [4] and J. M. .tysko [5] have given examples of contrac-

tible continua in 3-space E     which do not have the fixed point property.  It

is easy to show that their examples are approximate retracts of E  .  Conse-

quently, a compact contractible approximate retract of E3  need not have the

fixed point property (even with respect to homeomorphisms).

3.  Absolute approximate retracts.

Definition.   A space X  is an absolute approximate retract relative to the

class Q (abbreviated AAR(O)) if X £ 0  and whenever X is embedded as a

closed subset of a Q-space Z, then  X  is an approximate retract of Z.

Proposition 1.  Every AAR(Q)-space z's contractible.

Proof.   First we consider the case where Q  is not the class of separable

metric or metric spaces.  Let X  be an AAR(Q)-space.  Then X £ Q  and, if

/  denotes the closed unit interval [0, l], it is well known that X x I £ Q

[2, p. 331]. Let C(X) denote the cone over X with vertex p. Since C(X) is

the Hausdorff image of a closed map from the Q-space X x /, it follows that

C(X) £ 0  [7], Moreover, X is homeomorphic to the closed subset X x iOi of

C(X).  Thus there is a retract R  of C(X) such that X x iOi C R C C(X) - {p\.

Define a retraction   r:   R —* X x iOi by r(x, t) = (x, 0) for all (x, t) in

R.  Since X x iOi is a retract of R  and R  is a retract of C(X), it follows that

X x iOi is a retract of C(X).  The point p is a strong deformation retract of

Gi%) [3, p. 19], and thus  C(X) is contractible.  It then follows that X x iO!

is contractible [1, p. 26], and therefore X  is contractible.

Now we consider the case where Q  denotes the class of separable met-

ric or metric spaces. Suppose X is an AAR(0)-space.  Then, by the Kuratow-

ski-WojdysJawski embedding theorem [l, p. 79], we may assume that X  is em-

bedded as a bounded subset of a proper linear subspace L   of a Banach space

B.  Let p £ B - L, and let C(X)  denote the subset of B  consisting of the
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union of all straight line intervals [p, x]  where x £ X.  Then C(X) is a con-

tractible O-space, and the remaining argument is analogous to the argument

used for the other cases.

As a corollary to Proposition 1, we obtain the following result.

Theorem 1. A space X is an AR(0)-space iff X is an AAK(Q)-space

and X is an ANR(Q)-space.

Proof. It is clear that if X is an AR(Q)-space, then X is an AAR(Q)-

space and X is an ANR(Q)-space.

Now suppose X e AAR(Q) and X e ANR(Q). Then, by Proposition 1,

X is a contractible ANR(Q)-space.  Therefore X is an AR(Q)-space [2, p. 332].

Proposition 2.  Every first countable AAB.(Q)-space is locally connected.

Proof. Suppose X is a first countable AAR(Q)-space which is not lo-

cally connected at a point p.  Then there exists a neighborhood V of p in

X and points p^, p2,_, p{, ...  such that lim^^p. = p, and each of the

points p, p., p2, ... , p., ...   lies in a different component of V.  To com-

plete the proof of Proposition 2, we construct a Q-space Z such that X is a

closed subset of Z which is not an approximate retract of Z.  The space Z

is an identification space formed from X  and a plane continuum Y.

We now construct the plane continuum  Y.  Let q. denote the point (l/z,

0), i = 1, 2, ... , and let 0 denote the origin in the plane E  .  For each z =

1, 2, ..., let A . denote the curve in E    whose equation is given by

y = - sin (-j,        -< x <-.
i \i(i + l)x - i) i' + 1 i

Then  CIA.  is a plane continuum joining the point q.  to a vertical interval

of length 2/z  which passes through q.  ,.  Define B = {J°°_.C1A . <j\0}.  Let

A  be a set lying in E    homeomorphic to a half-open interval such that A  is

disjoint from B  and "converges" to B in such a way that the following

properties are satisfied.

(1) There is a sequence of arcs 5,, S  , ... , filling up A   such that the

interiors of any two consecutive arcs lie on opposite sides of the x-axis.

(2) lim._   S. .   , = B  and lim.    S, . = B.
,->oo   2/-1 7-»°o   2]

Define Y = A u B.

Now let C = (J~ j i?Ii'-' l0!, and let /: C —* X be the map defined by

/(0) = p, f(q. ) = p. for z = 1, 2, . .. .  The space Z is obtained by taking

the disjoint union of  V  and X, and then identifying each point y £ C with

its image f(y) £ X.  Then Z is a Q-space and X is a closed subset of Z.

We first note that only finitely many of the sets CIA .   can be retracted

into X.  To see this, suppose r is a retraction mapping infinitely many of

the sets' CIA.   into X.  Now r is continuous at p, so there exists a neigh-
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borhood  U  of p  in Z  such that  r(U) C V.  Since  U must contain all but

finitely many of the sets CI A ., it follows that for some /, r(C!A .) C V.  But

then  r(OA.) is a connected subset of V  containing p.  and p.  ., which is

a contradiction.

Now let W  be a neighborhood of X  in Z  such that any point in W n Y

has distance less  than  l/2 from  the   x-axis.  Then  W  contains infinitely many

of the sets CI A., and no connected subset of W containing X contains a point of A.

Suppose R is a retract of Z   such that X C R C W. Since Z is connected and

only finitely many of the sets  CIA.  can be retracted into X, it follows that

R must be a connected subset of W  containing infinitely many of the sets

CIA ..  But if CI A . C R, then a subinterval of A  must be mapped onto the

nonlocally connected space CIA. , which is impossible.  Therefore X is not

an approximate retract of Z  and the proof is complete.

In the following discussion we shall restrict ourselves to the compact

metric case and omit the symbol Q. Using this notation, we obtain the follow-

ing theorem from Propositions 1 and 2.

Theorem 2.   Every AAR-space is a contractible Peano continuum.

Corollary 1.  The l-dimensional AAR-spaces coincide with the l-dimen-

sional AR-spaces.

Corollary 2.  // X z's planar, then X is an AR-space iff X is an AAR-

space.

Proof of Corollary 1.  Let X  be a l-dimensional AAR-space.   By Theorem

2, X  is a dendrite.  Since the l-dimensional AR-spaces coincide with the

dendrites [l, p. 138], Corollary 1 follows.

Proof of Corollary 2.  Let X be a subset of the plane E    which is an

AAR-space.  By Theorem 2, X is a locally connected continuum which does

not separate E  .  Therefore X is an AR-space [l, p. 132], and Corollary 2

follows.

Remark.  In [6] C. W. Saalfrank generalizes the notion of an absolute

retract for compact Hausdorff spaces to a concept which he calls an absolute

homotopy retract (abbreviated AHR).  It is easy to see that every contractible

continuum is an AHR, and conversely, by taking the cone over an AHR, one

sees that every AHR is contractible. Thus for the case of compact metric

spaces, we see that the class of AAR-spaces is a proper subclass of the

class of AHR-spaces.
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