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ON THE APPLICATIONS OF COALGEBRAS

TO GROUP ALGEBRAS

ALAN ROSENBERG

ABSTRACT.    This paper examines the coalgebra structure on k[G]

and relates it to the group theoretic properties of  G.  In particular it is

shown that there is an intimate relation between  k[G]  being proper and  G

being residually finite.  We use this to derive a series of conditions on the

group to guarantee it being residually finite.

It is well known that the dual of a finite dimensional algebra has a ca-

nonical coalgebra structure induced on it.  This, and the fact that there is a

natural isomorphism from k[G] onto k[G]  , when G is finite, has been taken

advantage of (cf. [7]) in establishing a coalgebra structure on k[G]. The co-

multiplication is

Ao-= X  <rx® X_1     Vtf£ G
XeG

and the counit is

((L»o-a) = ne

where  e is the identity element of G. We would like to generalize this to the

infinite case.

Unfortunately, the dual of an infinite dimensional algebra is too large to

canonically take a coalgebra structure. Therefore, if A is an algebra over k

we look at

A° = [/£ A  |ker// contains a cofinite ideal}.

An ideal  / C A  is   said to be cofinite if A/f  is finite dimensional over k.

Now there is a canonical way to impose a coalgebra structure on A°.   In fact

one may view ( )° and ( )    as adjoint functors between algebras and coalgebras.

Let i be the natural mapping from  k[G\ into  k[G\  , given by

i: \f:  G —> k \ f has finite support! —► }/:  G —» k\.

Now several questions arise. What does k[G]° look like? The following

theorem is a step in that direction.

TlteDrem 1.   Let G be an infinite group.  Then i(k[G]) D k[G]° = (0).
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Proof.  It can be shown (cf. [6, p. 115]) that k[G]    is a  k[G] module by

(1) ib _ f)ia) = zZ fty)bio- ty),       b 6 A[G],    /e A[c]*,    ae G.

Notice that the sum in (1) is finite.  If *  is the well-known involution on the

group algebra and / £   k[G], then equation (1) says that

(2) fc-/=/**

where the right side of (2) is just ordinary multiplication in  k[G],  It is well

known that / £ k[G]    will actually be in  k[G]° if and only if k[G] —- f is fi-

nite dimensional.  By (2), this is equivalent to saying that / £ z'(&[G])n k[G]°

it and only if the right ideal in  k[G]  generated by  / is finite dimensional.

But if G  is infinite it is easy to see that no right ideal can be finite dimen-

sional.  Q.E.D.

Now if A   is an algebra then we have a natural mapping, p:  A —> (A0)

as algebras.  If p is one-to-one we say that A  is proper.  It can be shown that

this is equivalent to every nonzero element of A   being disjoint from a cofinite

ideal.  This raises the question: What are necessary and sufficient conditions

on  G in order that  k[G]  be proper?

It can be shown, using Krull's intersection theorem and the Hilbert null-

stellensatz, that a commutative finitely generated algebra is proper. Since a

finitely generated Abelian group is residually finite the following theorem ex-

tends this result in the case of the group algebra.

Theorem 2.   // G  is residually finite then k[G]  is proper.

Proof.   Let / ■/ 0 £ k\G].  Consider the set S = \cnp~   \ where a 4 if* runs

through  supp /.  By hypothesis there exists a normal subgroup N ol G such

that  [G : N]  is finite and zV  is disjoint from  S.  Let 77 be the natural projec-

tion of k[G]  onto  k[G/N]. Since no two elements of supp / are congruent

modulo  N we clearly have / 4 ker 77.  Yet &[G]/ker 77 * k[G/N]  and so ker 77

is cofinite.    Q.E.D.

Hence k[G] is proper for free groups and finitely generated matrix groups

over a commutative ring.

The above theorem possesses a partial converse.

Theorem 3.   // k[G]  is proper then G  is residually finite if either

(i) k  is finite, or

(ii)  G   z's torsion and finitely generated.

Proof.   Let <5 be any nonidentity element of G. We must exhibit a normal

subgroup, N, which is of finite index in  G  that does not contain  8.  Consider

the element 8-1. Since  k[G]  is proper there exists a cofinite ideal  M  such

that 8-1 4 M. Consider the map p:  G —► Aut, (k[G]/M) defined by (pit),

f + M) = if + M where 1 £ G and / e k[G]. Clearly p is a homomorphism to
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the general linear group Gl (k) where a = codim, Al.  Let N = ker p. Then N

is a normal subgroup of  G and it is easy to see that N = \ifj £ G | if — 1  £ Al!.

Hence 8 4 N. Now G/N is a subgroup of Gl (k). If condition (i) prevails

then of course Gl (k) and hence also G/N is finite.  If case (ii) is true, a

theorem of Burnside yields the desired result, (cf. [2])    Q.E.D.

We now proceed to derive sufficient conditions on G for k[Gl to be proper.

Theorem 4.   // G  is a group and its center Z  is both finitely generated

and of finite index, then  k[G]  is proper.

Proof.  Let \e = a., a., .. ., a  i be a set of coset representatives for Z

in G, where  e is the group identity. Since k[G] is a free k[Z] module with

e, o.,..., a    as a basis, if / £ k[G] is nonzero we may write / = S"_./3 cr.,

h. e k[Z], and not all the h. are zero. If h. 4 0, then since k[Z] is proper,

there is a cofinite ideal /. of k[Z\ such that h. 4 J ■•  Let Al = ||/.. Then

Al is a cofinite ideal of k[Z] and no nonzero h. £ Al. Consider the set L =

IXg.CT. \g. £ Alj. Then since the g. are central we see that L  is an ideal.

Furthermore, by freeness, dim, k[G]/L = (dim, k[G]/M) • ([G:Z]). Finally, it

is clear that / 4 E.    Q.E.D.

Theorem 5.  // G  is a finitely generated torsion-free nilpotent group then

k[G]   is proper.

Proof. By a result of Jennings (cf. [3]), the conditions imposed upon G

in the hypothesis imply that II A" = (0) where A is the fundamental ideal.

Hence our result will follow if we can show that each A"  is cofinite.  We

proceed by induction. A is of codimension one. Now assume that A"       is

cofinite.  Note that A/A"   is a finitely generated  &[G]/A"-1   module. Since

k[G]/A"~    is itself finite dimensional over  k it now follows that so is  A/A".

But we can now conclude that A"  is cofinite.

Theorem 6.   // G  is a finitely generated group and has an Abelian sub-

group H, of finite index, then  k[G\  is proper if either

(i)  characteristic of k  is zero, or

(ii) characteristic of k  is p and G  contains no elements of order p.

Proof. In [5] it is shown that under the assumptions of the hypothesis

the simplicial radical of k[G\  is trivial. Hence any nonzero element of k[G]

is not included in some maximal ideal. But it is well known that the first two condi-

tions on G imply that &[G] is a finitely generated polynomial identity algebra. The-

orem 3.3(c) of [4] now guarantees that each maximal ideal is cofinite.     Q.E.D.

The previous four theorems combine to yield sufficient conditions for a

group to be residually finite.

Theorem 7.  A group  G   is residually finite if it possesses any of the

following properties:
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(i)  The center of G  is both finitely generated and of finite index.

(ii)  G  z's finitely generated, torsion free and nilpotent.

(iii)  G  is finitely generated, torsion and contains an Abelian subgroup

of finite index.

(iv) G is finitely generated, has no p  torsion elements for some prime

p, and contains an Abelian subgroup of finite index.

(The second condition is not a new result and was proved by Gruenberg

(cf. [l]), although in a different manner.)
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