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WEAKLY COMPLETELY CONTINUOUS ELEMENTS

OF C*-ALGEBRAS

KARI YLINEN

ABSTRACT.  For a C  -algebra  A   and u  e A, the equivalence of the fol-

lowing three statements is proved: (i) the map x h-> uxu   is a compact operator

on A, (ii) (resp. (iii)) the map x h-» ux  (resp. x H* xu) is a. weakly compact

operator on  A.  The canonical image of a dual C  -algebra  A   in its bidual

A **
A       is characterized as the set of the weakly completely continuous ele-

ments of A

1.  Introduction. Let E be a Banach space and  L(F) the Banach algebra

of bounded linear operators on  E.   K. Vala has proved in [15] that  T £ L(F)

is a compact operator on  B if and only if the map X i-» TXT is a compact

operator on  L(F). Motivated by this phenomenon Vala defined in [l6l the ele-

ment  u of an arbitrary Banach algebra A to be compact, if the map x (-> uxu

is a compact operator on  A.   Subsequent investigations (see [l], [18], [19])

have further indicated that this definition   yields indeed a natural extension

of the notion of a compact operator.

If H is a Hilbert space, the following nonspatial characterization of the

compact operators on  H is also available: T. Ogasawara proved in [lO] that

T £ LiH) is a compact operator if and only if the map X H» TX is a weakly

compact operator [6, p. 482] on  LiH), In the context of C -algebras this re-

sult suggests another generalization of the concept of a compact operator.

For any Banach algebra  A, u e A   is called a left (resp. right) weakly com-

pletely continuous—abbreviated l.w.c.c. (resp. r.w.c.c.)—element of A, if the

map x )-» ux (resp.  x h-> xu) is a weakly compact operator on  A.  It follows

from Corollary 6 in [6, p. 484] that the l.w.c.c. (resp. r.w.c.c.) elements of

A form a closed two-sided ideal.  In the case of a C -algebra these ideals

are thus selfadjoint [5, p. 17], and so (as noted by Ogasawara in [10, p. 362])

if  u £ A  is l.w.c.c. it is also r.w.c.c. (the operator x Y-* iu x  )   = xu is

weakly compact), and conversely. Therefore we shall simply call the l.w.c.c.

(resp. r.w.c.c.) elements of a C -algebra weakly completely continuous (w.c.c).

The main result of this paper (Theorem 3.1) states that an element of a

C -algebra is compact if and only if it is w.c.c, i.e. the two generalizations

of a compact operator are in fact the same. The first half of our proof is

based on the theorem of Ogasawara mentioned above, but in §2 we give this
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result a short new proof (Corollary 2).  We are grateful to the referee for sim-

plifying the second half of the proof of Theorem 3.1.

Let A  be a C -algebra.  We shall regard its second conjugate space  A

as a C -algebra by identifying it with the enveloping von Neumann algebra

of A  [5, p. 237]. In [3, p. 869] it is proved that this algebra structure of A

also arises from either one of the two Arens multiplications in  A     .  If x e A,

we let x   denote the canonical image of x in A     , and write A = \x | x £ A j.

2.  Dual C -algebras. It is well known (see [14, p. 533], fe], [2, p. 255])

that a C -algebra A is dual in the sense of Kaplansky (see e.g. [7]) if and

only if A  is an ideal (two-sided by selfadjointness) of A     . Several charac-

terizations of dual C -algebras are listed in [5, 4.7.20, p. 99L  We note in

passing that one further criterion, given in [9, p. 88] (see also [17, p. 538]),

follows at once from Theorem 6 in [11, p. 2l] (i.e. (v) in [5, p. 99]) and

Gantmacher's theorem [6, p. 485].

Theorem 2.1.   Let A   be a dual C -algebra and u £ A     .   Then u £ A  if

and only if u  is a w.c.c. element of   A

Proof.  Suppose first that zz = a   for some  a £ A.   The definition of the

first Arens product in  A       (see e.g. [3, p. 848]) shows immediately that the

map x i-> ux on  A       is the second transpose  La    of  La: A —• A  defined by

L x - ax, x £ A.   As A  is an ideal in A    , L„ x = ux e A  for all x £ A    .
a

Thus  La is weakly compact [6, p. 482], and so is   LQ  : A      —> A      by

Gantmacher's theorem [6, p. 485J, i.e.  u is w.c.c.  Suppose, conversely, that

u is w.c.c.  Since  A  is an ideal in  A     , uA C A, so the restriction   L =

L   \A, where   L  x - ux, x £ A     , may be regarded as an operator from  A  into

itself.   We have  L    - L     , since both operators are weak    continuous (see

[6, p. 478], [3, pp. 848, 869]) and agree on the weak    dense subspace  A  of

A     .  Another application of Gantmacher's theorem shows that   L is weakly

compact so that   L     (A     ) C A   [6, p. 482], i.e. uA      C A,   In particular, for

the identity 1 of A      we have u = ul £ A.

Corollary 1.   Let A  and B  be dual C  -algebras.   Any topological algebra

isomorphism from A       onto £T    maps A  onto B.   In particular, if A       and

B       are ^-isomorphic, then so are A  and B.

Remark.  Corollary 1 becomes false, if the word "dual" is omitted.  As

an example one may consider the C -algebra c of all convergent sequences

of complex numbers, and its sub-C -algebra  cQ  consisting of the sequences

converging to zero.  It is well known that the second conjugate space of both

c and c    is  /   , the space of bounded sequences, but c  is not isometrically

isomorphic to  c».

Corollary 2    (Ogasawara [10, Theorem 4, p. 362]).   Let  H  be a Hilbert
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space and T £ LiH).   Then  T  is a compact operator on H  if and only if T

is a w.c.c. element of LiH).

Proof.  Let  C(/V) denote the ideal of  L(W) consisting of all compact op-

erators on H. Since  L(W) may be identified with C(H)      in such a way that

the canonical embedding of C(r7) into  CiH)      corresponds to the inclusion

map of CiH) into  L(H) (see e.g. [5, p. 236] or [13, p. 47]), the corollary is

an immediate consequence of the theorem.

3. The equivalence of compactness and weak complete continuity for

elements of C -algebras.  The proof below that (ii) implies (i) is due to the

referee.  It is considerably shorter than our original argument.

Theorem 3.1. Let A be a C -algebra and u e A. The following three

conditions are equivalent:

(i) the map x \-* uxu  is a compact operator on A,

(ii) iresp. (iii)) the map x t-» ux 'resp. x h-» xu) is a weakly compact

operator on A.

Proofo  It was noted in the introduction that (ii) and (iii) are equivalent.

Assume (i).  There is an isometric *-representation   77 of  A  on a Hilbert space

H such that  niu) is a compact operator on  H  [191.  By Corollary 2 in §2, the

operators  X h-» niu)X and  X H-» Xniu) on   L(W) are weakly compact.  Since

77(A) is oiLiH), L(/7)*)-closed and the relative o{L(/i), L(/7)   )-topology on

77(A) agrees with  oiniA), 77(A) ), it follows that x h-> ux and x h-> xu are

weakly compact operators on A.   Assume now (ii).   As the ideal  W of the

w.c.c. elements is selfadjoint, it is a sub-C -algebra of A.   Since each ele-

ment of  W  is w.c.c, W  is a dual C  -algebra by Theorem 6 in [ll, p. 2l],  As

W has an approximate identity [5, p.  15]> Cohen's factorization theorem [4,

Theorem l] shows that u = vw for some  v, w £ W.   Thus the operator x h-»

uxu on A  may be written as   TATAT.   where   T^x = xv, x £ A, T7y = wyw, y

£ W, and  T,z = vz, z £ W.   But  T2: W —> W is a compact operator (see e.g.

[l, Corollary 8.3]), and so (i) holds.

Note.   The compact elements of A form a closed two-sided ideal [18,

Theorem 3.10],  This ideal is by Corollary 8.3 in [l] a dual C -algebra, whose

every element is thus w.c.c. by [ll, Theorem 6], It is therefore clear that the

technique used in the second half of the above proof would give an alternate

approach to the first half of the proof, too.

Corollary 1.   The  C  -algebra  A  is dual if and only if its canonical image

in A       coincides with the closure of the socle of A**.

Proof. The socle of a Banach algebra is discussed in [12, p. 46], Since

the socle, if it exists, is a two-sided ideal, the condition is sufficient for A

to be dual.  Suppose now that  A  is dual.  Theorems 2.1 and 3.1 show that
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A  coincides with the set of the compact elements of A     .  But this set is

the closure of the socle of A      by Theorems 3.10 and 5.1 in [18],

Of course, Theorem 3.1 transfers all known facts about compact elements

of C -algebras (for example, the representation theorem of [19]) to the con-

text of w.c.c. elements.  In particular, we obtain the following generalization

of Ogasawara's theorem (Corollary 2 in §2):

Corollary 2.   Let  H be a Hilbert space and A  an irreducible sub-C  -

algebra of L(H).   Then  T eA  is a w.c.c. element of A  if and only if T is

a compact operator on H.

Proof.  We only need to show that  T is a compact operator, if it is a

w.c.c. element of A.  This follows from the above theorem and Corollary 2 in

[18, p. 15].  (Note that for C -algebras strict and topological irreducibility

are equivalent [5, p. 45].)
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