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A CURVATURE OBSTRUCTION TO COVERING DEFORMATIONS

OF CONNECTIONS BY METRIC DEFORMATIONS

PAUL E. EHRLICH

ABSTRACT.  A curvature obstruction to covering a deformation of con-

nections of a Levi-Civita connection of a Riemannian metric by a metric  de-

formation is derived and used to study deformations of connections related

to the deformation of connections arising from a conformal deformation of a

Riemannian metric.

In this note we assume familiarity with the difference tensor of two con-

nections, as explained for instance in [5, §5.4].  Everything will, for conven-

ience, be taken to be C   . Given a manifold M", n>2, and a Riemannian metric

g for M, a conformal deformation  git) = e   ''g  of g results in the following

classical formula for the Levi-Civita connection  D    of git):

il) DlxY = DXY + ti£iX)Y + £(Y)X - g(X,  Y) grad /)

where  <f := df and  D  is the Levi-Civita connection associated to g.   Conform-

al deformations have proved useful in deforming Ricci curvature [l], [4], and

in considering the problem of conformal transformations [3], [6],  However, in

[4] we saw that at least at first order, conformal deformations are not good

for perturbing sectional curvature.

This fact together with the form of the difference tensor  Dl — D in (1)

suggests that we consider whether the deformations of the Levi-Civita con-

nection   D  of g  given by

(2) DxY=DxY + ti£iX)Y+ f(y)X)

and

(3) DxY = DxY + tgiX, Y)Z,

where  Z is a fixed vector field on  M, can be covered by metric deformations

git) of g.  Note that (2) and (3) are perhaps the simplest natural deformations

of connections involving vector fields.  In particular, deformation (2) is just

the symmetrization of the "g-projection on  zf      given by (X, Y) (-» g.(£ , X)Y,

where we use the notation £    for the vector field associated to the 1-form

£ by g.  (Explicitly, gig*. X) := £(X).)

It is curious that (2), which is just the first two terms of the conformal
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deformation (1), is precisely the tensor discovered by Weyl in studying pro-

jectively equivalent connections, and that at least in the case of constant

curvature, the deformations (2) and (3), which do not appear to be much alike,

fail to be covered even at first order by metric deformations for the same

reasons (Proposition 1 «~» Proposition 4, and Proposition 3 «-» Proposition 5).

In § 1 we derive the "curvature obstruction" for a deformation of a Levi-

Civita connection through torsion free connections to be covered by a metric

deformation. In §2 we use this curvature obstruction to study the deformations

(2) and (3) on constant curvature manifolds.

We use the sign convention   R(X, Y) = Wy, D  ] - Dr^. „i for the curvature

tensor. We use the form of the Lie derivative operator 8 : A  (M) —> S (M) de-

fined in [2, §2]. We will also use the notation of [2] for various bundles and

differential operators arising in connection with metric deformations.  In the

calculations and formulas below, we will usually write ( , ) for a fixed Rie-

mannian metric  g.

1. The curvature obstruction. Let D be a fixed connection on M. Let

( HD' be a deformation of connections through D (thus D = D), analytic

in t of at least order 2. We may write

Dl = D + C1 = D + tC1 + (t2/2)C2 + ••■

where the  C'  ate tensors.  We call  C' := (d/dt)Dl\t=Q the first order differ-

ence tensor of the deformation  t h-» £>'.   (Of course   C   = C  .)

Let  Rl be the curvature tensor of Dl,  A calculation shows

R'(x. y)z = R(x, y)z + D^C^y, x) - Dy(C')(x, z) - [Cl(x, -), Cl(y, -)](z)

where

[Cl(x, -), CKy, -)](z) = C'(x, Cl(y, z)) - C'(y, Cl(x, z)).

If wejdefine r(Dl) = r(C') := (d/dt)Rl\    Q, then as was pointed out to us by

J. Simons,

(4) riDl)(x, y, z) = r(C')(x, y, z) = Dx(C')(y, z) - Dy(C')(x, z).

Thus considering deformations of curvature tensors at first order from the

viewpoint of deformations of connections leads to the relatively simple dif-

ferential system of Simons' type

(oh)(x, y, z) := (Dh)(y, z) - (Dh)(x, z)
x y

(see [2, §6.2]). This simplicity contrasts with the formula for /?' when t

i-» Dl is a deformation of D through Levi-Civita connections associated

with a metric deformation  t h-> g(t) of g.  In this case, if h := g'(0) is the
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1-jet of the metric deformation of g, then

2R\x, y)z = iDDh)ix, y; z, -)" + iDDh)ix, z; y, -)n - iDDh)ix, -; y, z)n

- iDDh)iy,  x; z, -)# - iDDh)iy,  z; X, -)n + iDDh)iy, -; X, z)n.

Define D: S2(M) — S2 ® Al(M) by

2i0h)ix, y, z) := iDjMy, z) + iDyh)ix, z) - (D^)(x, y)

(compare [2, §6.b]). If the metric deformation t h-» git) of g with 1-jet h =

g'(0) induces the deformation t h-» D' of the Levi-Civita connection  D of g,

it is well known that the tensors   C'  and h  are related by

(5) iDxh)iy, z) = (C'U y), z)+ {C'ix, z), y)

or equivalently by

(6) iC'ix, y), z) = inh)ix, y, z)

which we will write as  <ph)   - C'.

Fix a Riemannian metric  g  for M  with Levi-Civita connection  D.

Definition. A deformation t h* D( of D through torsion free connections

is covered at first order by a metric deformation t h-> git) iff

(i) D  is the Levi-Civita connection of g(0), and

(ii) <ph)   = C', where h = g'(0) and  C' is the first order difference ten-

sor of the deformation t h-> Dl.

We emphasize that all that is needed for equation (5) to hold is that  git)

covers  D'  at first order.

Recall the formula that if git) is a deformation of g  with  g (0) = h, then

R'ih)ix, y, z, w) := id/dfigitiiRtix, y)z, w)\( = Q

= iR'ix, y)z, w) + hiRix, y)z, w).

Thus if git) covers D   at first order,

R'ih)ix, y, z, w) = (r(C')(x, y, 2), w) + hiRix, y), z, w)

where  C' is the first order difference tensor of t (-» D , and thus

K'ix, y) := id/dtiiK'ix, y))|f=0= <r(C')U y, y), x>+ MR(x, y)y. *)

(7) - K(x, y)(/;(x, x)/p(y, y) - ihix, y))2),

where {x, y\ are g-orthonormal vectors spanning some 2-plane. Here we use

the notation  Kl (resp.  K) for the sectional curvature function determined by

the Riemannian metric git) (resp. g). Since  K'ix, y) depends only on the

2-plane spanned by the tangent vectors  x and y, we can interchange  x and

y  in formula (5).  Hence we obtain the following curvature obstruction for
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g(t) to cover Dl  at first order:

(8)  (r(C')(x, y,y), x)+ h(R(x, y)y, x)=(r(C')(y, x, x),. y) + h(R(y, x)x, y).

2.  An application of the curvature obstruction.  We use the curvature

obstruction (8) to study, in the case of constant sectional curvature, the de-

formations (2) and (3) mentioned in the introduction, whose sum is precisely

the deformation of a connection associated to a conformal deformation of a

Riemannian metric.

Recall that two connections for a manifold  M  ate said to be projectively

equivalent if they have the same pregeodesics.  Given a 1-form  <f on  M, let

P(g) £ S  (M) be the symmetric 2-tensor defined by

P(0(x, y) := £{x)y + £(y)x.

1 2
Weyl showed that two torsion free connections   D     and  D    ate projectively

equivalent iff there exists a 1-form  £ £ A  (M) such that  D   - D    = P(<f).

If Dl is a smooth deformation of D through connections projective to D,

which we will call a projective deformation, then  Dl = D + P(ql) where the

map  t l-> t    is smooth in  t.   Thus a deformation of type (2) is an example of

a projective deformation. Let f := (d/dt)q~l1    0 be the first order difference

1-form of the projective deformation D   of D.  Then C' = P(tf ) and

r(C')(x, y, z) = 2(rff')(*, y)z + (Df')Wy - (D  £')(z)x.
x y

We can now apply the curvature obstruction (8) to obtain

Proposition 1.   Let  (M, g) be a flat, compact Riemannian manifold.   Then

a necessary condition for a projective deformation  Dl  of the Levi-Civita con-

nection  D  of g  to be covered at first order by a metric deformation is that

the first order difference 1-form  q'  of the projective deformation be a Killing

1-form, i.e., 8 <f = 0.

Corollary 2.  Given  (M, g) flat, compact, cf 4 0 any 1-form on M  that is

not a Killing 1-form.   Then the deformation  D*XY = DXY + t(£(X)Y + f(Y)X)

cannot be covered even at first order by a metric deformation of g.

Proof of Proposition 1.   Suppose  g(t) covers  Dl at first order, g(0) = g.

For [x, y\ g-orthonormal tangent vectors,

(r(C')(x, y, y),x) = -(8*f')(y. y).

Thus (8) implies   (S*£')(x, x) = (8*?)(y, y). Hence  S*cf'= fg for some smooth

function /: M —» R.   But since  M is compact and has zero scalar curvature,

<5*<f' = 0 (see [7, Chapter 3, especially Lemma 2.3, p. 52]). Q.E.D.

In the noncompact case in the context of Proposition 1, we see (again

using [7, Chapter 3J) that the first order difference tensor C   must be an in-
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finitesimal conformal transformation, that is, 8 g  = fg, where, in addition,

A/ = 0, A = dS + 8d, if the projective deformation is covered at first order by

a metric deformation.

Proposition 3.   Let  (M, g) be a complete Riemannian manifold with con-

stant sectional curvature  c 4 0.   Let  c,  be a nontrivial Killing l-form, i.e.,

8 <f = 0.   Then Dl = D + tPi£) is a deformation of type (2) which cannot be

covered even at first order by a metric deformation of g.

Proof. Suppose git) is a metric deformation of g covering Dl at first

order.  For ix, y\ g-orthonormal, since  8 5=0 we have

(r(C')(x, y, y), x) + hiRix, y)y, x) = -8   rf(y, y) + chix, x) = chix, x).

Thus (8) implies  hix, x) = hiy, y).  Hence h = fg  where /: M —> R is smooth.

But then equation (5) in this particular case implies

xif)(y, z) = 2cf(x)(y, z) + {iy)(x, z) + £iz)(x, y)

for all x, y, and  z.   Taking x = y = z 4 0, xif) = 4^ix) which implies df = 4<f.

Taking unit vectors x, y = z with  ix, y) = 0, we have  xif) = 2^(x) which im-

plies df = 2rf. Hence df = 0, so / is constant.   But then Dh = 0, since h =

fg, so C' = (pA)   = 0, a contradiction. Thus D   cannot be covered even at

first order by a metric deformation. Q.E.D.

We now study deformations of type (3), DXY = DXY + tgiX, Y)Z.   Let ry

be the l-form associated to  Z be the metric g, i.e., rjix) = giZinix)), x).  Re-

call that if (M, g) satisfies the condition   K > 0 (or  K < 0), then for ix, y|

g-orthonormal, K(x, y) = 0 implies  Rix, y)y = Riy, x)x =0.  If a metric de-

formation git) of g  covers the above type (3) deformation at first order, then

iriC')ix, y, y), x) = (D  Z, x).   Thus if  K > 0 and   K(P) = 0, for a g-orthonormal

basis  ix, y\ for P, the curvature obstruction (8) implies

(9) (DxZ, x)=iDyZ, y)

or equivalently, S  -qix, x) = 8 rjiy, y).   Applying observation (9) to the basis

i(x + y)/y2, ix - y)/y2\, a calculation shows

(10) 8*-qix, y) = 0.

Thus in the case   K > 0 (or  K < 0), the possible choices of  Z  so that

the deformation (3) of connections can be covered by a metric deformation

are limited by equations (9) and (10).  In particular, we have the same con-

clusion as in Proposition 1 in

Proposition 4. Suppose  (M, g) is flat, compact.   If the deformation DlyY

= D„y + tgiX, Y)Z can be covered at first order by a metric deformation, then

Z is a Killing vector field.
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Proof. Equations (9) and (10) imply 8 rj = fg tot some smooth /: M —» R

(■q as above). Then by the proof of Proposition 1, Z = rf is a Killing vector

field. Q.E.D.

Like Proposition 3, we have

Proposition 5.  Suppose  (M, g) is complete with constant sectional cur-

vature c 4 0.   Let Z 4 0 be a Killing vector field.   Then the deformation of

connections, DXY = DXY + tg(X, Y)Z, cannot be covered even at first order

by a metric deformation of g.

Proof.  Since  Z  is Killing, (L>XZ, x) = 0 for all x e TM.   Hence equation

(8) applied to any two g-orthonormal vectors  x and y reduces to  ch(x, x) =

ch(y, y). Hence h - fg tot some smooth /: M —* R.   Then by equation (5) and

the equality h = fg, tot all x, y, w e M  , and p £ M,

(11) (Dxh)(y, w) = x(f)(y, w) = (x, y)(Z(p), w) + (x, w)(Z(p), y).

If Z(p) = 0, evidently  Dh\p = df(p) = 0. Thus suppose Z(p) 4 0. Given any

0 4 x £ M , choose y = w to be a unit vector with (x, y) = 0. By (11) for this

choice of x and y = w,  x(f) = 0. Thus df(p) = 0.  We have thus shown that

df= 0 on M.  Then  Dh = 0 because h = /g, and hence C = (DA)H = 0. But

this implies  Z vanishes identically, a contradiction.  Q.E.D.
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