EXTENDING CONTINUOUS FUNCTIONS IN ZERO-DIMENSIONAL SPACES

NANCY M. WARREN

ABSTRACT. Suppose that X is a completely regular, zero-dimensional space and that a dense subset S of X is not C^* -embedded in X; does there then exist a two-valued function in $C^*(S)$ with no continuous extension to X? The answer is negative even if X is a compact space. The question was raised by N. J. Fine and L. Gillman in *Extension of continuous functions in \beta N*, Bull. Amer. Math. Soc. 66 (1960), 376-381.

This paper answers a question raised by N. J. Fine and L. Gillman in [1]. Suppose that X is a completely regular, zero-dimensional space and that a dense subset S of X is not C^* -embedded in X; does there then exist a two-valued function in $C^*(S)$ with no continuous extension to X? Theorem 1 establishes that the answer is negative.

I. First, I will give some background material, all of which can be found in [2].

All topological spaces are assumed to be completely regular.

The set of all bounded, continuous, real-valued functions on X will be denoted by $C^*(X)$. A subspace S of X is C^* -embedded in X iff every function in $C^*(S)$ can be extended to a function in $C^*(X)$. The Stone-Čech compactification of X is denoted as βX ; that is βX is the compactification of X in which X is C^* -embedded.

A space X is zero-dimensional if any two completely separated sets in X are contained in complementary open-and-closed sets of X. A space X is zero-dimensional if and only if βX is zero-dimensional.

The space of countable ordinals with the order topology will be denoted by W.

II. Theorem 1. There exists a zero-dimensional space X having a dense subset S such that S is not C^* -embedded in X, but every two-valued function in $C^*(S)$ has a continuous extension to X.

Proof. Let I = [0, 1] with the usual topology. For each $\alpha \in W$, select $I_{\alpha} \subset I$ such that I_{α} is dense in I and $I_{\alpha} \cap I_{\beta} = \phi$ if $\alpha \neq \beta$, and such that $\bigcup_{\alpha \in W} I_{\alpha} = I$.

Copyright © 1975, American Mathematical Society

Received by the editors March 1, 1974 and, in revised form, June 20, 1974.

AMS (MOS) subject classifications (1970). Primary 54C45; Secondary 54C20, 54G20.

Key words and phrases. Zero-dimensional space, C^* -embedded.

Let $S_{\alpha} = \{(x, \alpha) : x \in \bigcup_{\beta \le \alpha} I_{\beta}\}$ and $S = \bigcup_{\alpha \in W} S_{\alpha}$. Then $S \subseteq I \times W$. Topologize S using the relative topology from $I \times W$.

Note that the collection of all neighborhoods of $\langle x, \alpha \rangle$ of the form $\{\langle r, \gamma \rangle: y < r < z \text{ and } \delta < \gamma \leq \alpha \}$ where y < x < z and y and z belong to $\bigcup_{\beta > \alpha} I_{\beta}$ is a basis of open-closed neighborhoods of $\langle x, \alpha \rangle$ since $\bigcup_{\beta > \alpha} I_{\beta}$ is dense in I.

Let $X = S \cup \{2\}$. We define a topology on X as follows. S will be an open subspace of X. A neighborhood of 2 is any set U containing 2 such that $2 \in U$ and there is a $\beta \in W$ such that $\{(x, \alpha): \alpha > \beta\} \subset U$.

Since every neighborhood of 2 intersects X, S is dense in X. Also, S is completely regular since $S \subset I \times W$ where both I and W are completely regular.

A consequence of the following proof that X is zero-dimensional is that X is normal. So X is, clearly, completely regular.

To show that X is zero-dimensional, I will show that any two disjoint closed sets in X are contained in complementary open-closed sets. First, consider the case where A and B are disjoint closed sets in X such that $A \cup B \subseteq C = \bigcup_{\alpha \leq \gamma} S_{\alpha}$, for some $\gamma \in W$. Consider $\alpha_0 \leq \gamma$. For each point $\langle x, \alpha_0 \rangle \in S_{\alpha_0}$ pick U(x) a basic open-closed neighborhood of $\langle x, \alpha_0 \rangle$ such that either $U(x) \cap A$ or $U(x) \cap B$ is empty. Identifying S_{α_0} with $I - \bigcup_{\beta > \alpha_0} I_{\beta}$, S_{α_0} is second countable, so a countable collection $\{U(x)_n\}_{n \in N}$ covers S_{α_0} . Now, since $\gamma \in W$ there is a countable collection, say $\{V_n\}_{n \in N}$ of open-closed sets, covering C with the property that for each n, either $V_n \cap A$ or $V_n \cap B$ is empty. Define $W_n = V_n - \bigcup_{i < n} V_i$. Then $\{W_n\}_{n \in N}$ is a collection of disjoint open-closed sets which covers C and either $W_n \cap A$ or $W_n \cap B$ is empty. Let $0 = \bigcup_{i < W_k} W_k \cap A = \phi_i$; then $C - 0 = \bigcup_{i < W_k} W_k \cap A \neq \phi_i$. So 0 and C - 0 are complementary open-closed sets in X, $0 \cup X - C$ and C - 0 are complementary open-closed sets in X.

Now, suppose A and B are disjoint closed sets in X and $2 \in A$. Then there exists a $\beta \in W$ such that $B \subseteq D = \bigcup_{\alpha \leq \beta} S_{\alpha}$. Since D is closed in X, $A \cap D$ is closed in X. By the above argument there exist complementary open-closed sets H and K in D such that $B \subseteq H$ and $A \cap D \subseteq K$. Then H and $K \cup X - D$ are complementary open-closed sets in X such that $B \subseteq H$ and $A \subseteq H \cup X - D$. So X is zero-dimensional.

To show that S is not C^* -embedded in X, define $F: S \to I$ by $F(\langle x, \alpha \rangle) = x$. Obviously F is continuous.

However, F cannot be extended continuously to 2, since F assumes all values in every neighborhood of 2.

Every two-valued continuous function on S can be extended continuously to X. Let f be a two-valued continuous function on S with range $\{0, 1\}$. For each $x \in I$, there exists an $\alpha_x \in W$ such that f is constant on $\{\langle x, \beta \rangle: \beta \ge \alpha_x\}$, since for fixed x, the set of all points $\langle x, \alpha \rangle \in S$ is homeomorphic to W.

Now, for each $x \in I$, $x \neq 0$, 1, there exists an integer N_x such that f is constant on

$$U_{x} = \{(y, \alpha): x - 1/N_{x} < y < x + 1/N_{y}, \alpha > \alpha_{y}\}$$

If not, then for every integer *n*, there is a point $\langle y_n, \alpha_n \rangle$ such that $x - 1/n < y_n < x + 1/n$ and $\alpha_n > \alpha_x$ and $f(\langle y_n, \alpha_n \rangle) \neq f(\langle x, \alpha_x \rangle)$. But *x* is the limit of $\{y_n\}$ and some $\alpha' \in W$ is the limit of $\{\alpha_n\}$, so by the continuity of *f*, $f(\langle x, \alpha' \rangle) \neq f(\langle x, \alpha_x \rangle)$ which is a contradiction since $\alpha' > \alpha_x$. Similar arguments establish the existence of U_0 and U_1 .

For each U_x , consider $U'_x = (x - 1/N_x, x + 1/N_x) \subset I$. The collection $\{U'_x : x \in I\}$ is an open cover of I. Pick a finite subcover $\{U'_x\}_{i=1}^k$.

Let a_{x_1} be the largest of the ordinals $\{a_{x_i}\}_{i=1}^k$. Then f is constant on $B = \bigcup_{\beta > a_{x_1}} S_{\beta}$.

Extend f to $f': X \to \{0, 1\}$ by defining f'(2) = f(B). Clearly f' is continuous at 2 since $B \cup \{2\}$ is a neighborhood of 2.

III. Corollary. There exists a zero-dimensional compact space which satisfies Theorem 1.

Proof. Since X is zero-dimensional, βX is zero-dimensional and S is dense in βX . Since $F \in C^*(S)$ cannot be extended to X, F cannot be extended to βX . But every two-valued function in $C^*(S)$ extends to X and hence to βX . So βX is a compact zero-dimensional space which satisfies Theorem 1.

REFERENCES

1. N. J. Fine and L. Gillman, Extension of continuous functions in βN , Bull. Amer. Math. Soc. 66 (1960), 376-381. MR 23 #A619.

2. L. Gillman and M. Jerison, Rings of continuous functions, University Ser. in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #6994.

DEPARTMENT OF MATHEMATICS, METROPOLITAN STATE COLLEGE, DENVER, COLORADO 80222