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ON BOUNDEDNESS OF SOLUTIONS OF SECOND ORDER

DIFFERENTIAL EQUATIONS IN THE LIMIT CIRCLE CASE

MAN KAM KWONG

ABSTRACT.   A differential equation of the form x (t) + a(t)x(t)  = 0,

t s 0, is said to be in the limit circle case if all its solutions are square

integrable on  [0, °°).  It has been conjectured in [l] that all its solutions

are bounded.  J. Walter recently gave a counterexample.  This paper gives

a method of modifying any given equation in the limit circle case with

bounded solutions to produce one with unbounded solutions.

1.  Introduction.  H. Weyl [2] has classified the one-dimensional wave

equation

(1) x"(t) + a{t)x(t) = 0,       t>0,

where  a(t) is a locally integrable function defined on  [0, °°), as

Limit circle case — when all solutions of (1) belong to  L  [0, °°).

Limit circle case — when at least one solution is not square integrable

on  [0, °°).

Such a classification is closely related to the study of selfadjoint bound-

ary value problems and more generally in the study of the spectra of second

order differential operators.

H. Weyl has obtained the result that if (1) is in the limit circle (or limit

point) case, then the following perturbed equation

(2) x"(t)+(a{t)+Ht))x(t) = Q,

where  b(t) = 0(1) is a bounded real-valued function, is still in the limit

circle (or limit point) case.

J.S.W. Wong and W. T. Patula in [l] raise the  conjecture that Weyl's

result is still true when the condition  b{t) = 0(1)  is replaced by  b(t) £

L^[0, oo), for some p > 1. By a decomposition device [3], Wong is able to

reduce the problem to the case when p = 1. Yet the conjecture remains open,

and only partial results have been established. Many of the known examples

of limit circle case furnish bounded solutions.  Besides, in [l] the following

theorem was proved.

Theorem (Patula and Wong).  Suppose that all solutions of (I) are

bounded.  If equation (1) is in the limit circle case, then equation (2) is also

in the limit circle case and all of its solutions are also bounded.
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This theorem suggested the following

Conjecture.  // equation (1) is in the limit circle case, then all its solu-

tions must necessarily be bounded.

The hope was that once this conjecture is answered in the affirmative,

the theorem cited above would settle completely the former conjecture gener-

alizing Weyl's result.

However, Johann Walter gave the following counterexample: The function

xit) = git)cos(£g-2is)d^,

where  git) is any  C    positive function, satisfies an equation of the form (1)

with  a = g~    - g g~   .  If g is square integrable, (1) will be in the limit cir-

cle case. If furthermore g is a suitably chosen unbounded function, then x

is unbounded.

In this paper we shall develop another method by which one can modify

any given equation in the limit circle case with bounded solutions to one with

unbounded solutions.

2. Main results.  Let xAt) and xAt) be the solutions of (1) such that

Xj(0) = 1, x[ (0) = 0, x2(0) = 0, x'2 (0) = 1. We call \xx(t), x2it)\ the fundamen-

tal  set of solutions  of (1).    Notice that their Wronskian,   \_x At) x'A.t) -

x.it)xJt)], is constantly equal to 1.  Also notice that (1) is in the limit circle

case if and only if J~[*?(0 + xht)] dt < °°.

Lemma 1.  Let Fit) be a C    function defined on an interval [a, /3]  so

that Fit) > m, for some positive real number m, and for all t in the interval,

t.   is a given point in [a, f3].  Then we can construct another function Git)

with the following properties:

(A) G(t) > m for all t in [a, f3]; GitQ) = m;

(B) G(t) is a C2  function and Git) = F(t), G\t) = F'(r), G"it) = F"(r),

for t = a  or j3;

(C) f0G(t)dt = ffiF(t)dt.

Proof.  The proof is elementary.

Lemma 2.  Let \x^it), xJt)\ be the fundamental set of solutions o/(l).

[a, j8]  is an interval in which xJt) > 0.  Construct another C    function yAt)

with the following properties:

(i) yxit) = xx(t) for t £ [0, «.) - (a, /3);

(ii) yyit) > 0 for t £ [a, £];

(iii) Sidt/x\{t) = ftdt/y\{t).
Then y At)  is one of the fundamental solutions of the following equation:

(1*) y"it)+ axit)yit) = 0,       t>0,

in which
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(3) a1(i)=a(r)    for t£ [0, «,) -(a, /S).

// y2(0 z's another solution of (1  ) satisfying the initial conditions y2(0)

= 0, a«fi? y2'(°) = *> ^e"

y2(z) = x2(z)    /or r£ [0, oo) - (a, /3).

Proof.   (3) is a consequence of (i).

In the interval [0, a], equations (1) and (1  ) coincide. Furthermore, xJj) and

y2(0 have the same initial conditions at t = 0, implying that they coincide in

[0, a].  From the equality *,*2 - x.x- = 1, and the fact that xAt) > 0  in

[a, /3], we obtain

d /*2(/)\ 1

J'Xx^t))     x^it)

and so

^>_!z^= r ds
xj(r)    xj(a)     Ja  xj(7)

or

(4) xAt) = xAt)\X-2^-+ft-^\
2 1     [xj(a)     Ja ^G)J

for all < e [a, /3].  The same reasoning when applied to y,{t) and y2(/) gives

^ yi(a)     ,/a  yiU)l

Now it follows from (4) and (5), when (iii) and the equalities y,(a) = x.(a),

y2(a) = x2(a)  and yj(/3) = Xj(j8)  are taken into account, that y2(|8) = x2(/3).

Differentiation of (4) gives

2 l        Xj(a)     Ja x2(s)J     xx(/S)

A similar formula for y2 (^3) shows that x2 (fl) = y2 (/3). The equations (1) and (1  )

coincide in [/3, °°), while x~(t) and y2U) are their solutions with the same

initial conditions at /3.  Hence they must also be equal in [/3, <*>).   This com-

pletes the proof.

The geometrical significance of Lemma 2 is that given equation (1), we

can modify the function a(t) within a given interval [a, /3]  to obtain equation

(1  ), so that the two fundamental sets of solutions of (1) and (1  ) only differ

within [a, /3]. We are going to apply this technique to alter (1) to (1 )  so that
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(1  ) will have a solution that attains a sufficiently large value.

Lemma 3.   Let xAt) be the solution o/(l) as defined above. Suppose

that xAt.) > 0 for some  tQ.  It is possible to alter equation (1) in an interval

[a, ^3]  which is as small as we please and which contains  tn  so that the

fundamental sets of solutions of (1) and (1  ) differ only in [a, j8] and

(A) yia0)>M,

(B) {Py\it)dt < e and f%y22it)dt < e

where M  and e are preassigned positive real numbers.

Proof.  If xx(tQ) > M, we simply do not have to alter (1).  So we assume

that xAt.) < M.  It is possible to choose an interval [a, j8]  containing f.,

so small that

(i) 0 <xxit)<M  for all t £ [a, /3],

(ii) fPdt/x\(t)<l,

(iii) 2M2[(x2(a)/x1(a))2 + i](0 - a) < <r.

Now apply Lemma 1 to the function Fit) = x~2it) with m = M~     to obtain

Git). Define

!xxit), te[0, «,)- (a, (3),

GitYV\      :e(a,j8).

Then yx(t) < M for t £ [a, /3]  and y,('0) = M.  The first inequality in (B)

follows from (iii).  The fact that F(t) = Git), F'(t) = G'(t), and F"(/) = G"(t)

at r = a and /3 implies that y2(0 is C  . Lemma 2 shows that y2(r) and

x.(ij  differ only in [a., fS\.  Expression (5) shows that

<-2M%^)*]-f«*,u,<-' o>>'<iii,,•

Theorem.   Given any equation of the form (1) in the limit circle case, it is

possible to alter ait) to a At) so that (1 ) is still in the limit circle case

but one solution of (1  )  is unbounded.

Proof.  Choose a sequence of points \t  \ which increases to infinity,

so that xA.tn) > 0 for all n.  By the construction given in Lemma 3, it is pos-

sible to alter ait) in a sequence of intervals {[a   , f3   ]| which are pairwise

disjoint and each contains  t     so that y.it )> n, while

fnyMt)dt<±.     and    fn y2At)dt<±-.
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Furthermore, yAt) and y2(t) differ from xAt) and xAt) only in

U°°_,[a   , j8 ].  (1  )  is still in the limit circle case because

CO r,

(where  A = [0, «,)- (J   [c^, jBj, z = 1, 2j

OO

<fx2(z)^+yi-   < ^x2UU+l<°°•
JA   i *—  2"     -Jo    '

72=1
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