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ON FUNCTIONAL EQUATIONS RELATED TO MIELNIK'S

PROBABILITY SPACES

C. F. BLAKEMORE AND C. V. STANOJEVIC

ABSTRACT.   It is shown that the method used by C. V. Stanojevic

to obtain a characterization of inner product spaces in terms of a

Mielnik probability space of dimension 2 does not admit a generaliza-

tion to dimension n > 2.

Let /: [0, 2] —> [0, l] be continuous and strictly increasing with /(0)

= 0 and f(2) = 1.   The class of all such functions / will be denoted by E.

Likewise, let g: [0, 2] —» [0, 2] be continuous but strictly decreasing with

g(0) = 2 and g(2) = 0.   Similarly, the class of all such functions g will be

denoted by G.   In [l] it is proved that the functional equation

(*) f + fog-1

where (f°g)(t) = f[g(t)] has a solution / £ F if and only if g £ G is an in-

volution, i.e., g°g = e where e is the identity function on [0, 2].   Using

this result it is also shown that a normed real linear space N is an inner

product space if and only if for some f £ F, (S, f(\x + y\)) is a Mielnik prob-

ability space [2] of dimension 2.   The functional equation (*) served as a

tool to obtain a new characterization of inner product spaces.   In this note

we consider the possibility of extending this characterization of inner prod-

uct spaces to the case where p  is a probability function generated by an

appropriate function / and (S, p) is of dimension > 2.

Let g        denote m iterations of a function g: I —> / where / is some

interval.   Also, suppose  g      = e  where  e is the identity function on /  and

n is some positive integer.   We shall show that the generalized functional

equation

(**) / + /og + /og(2)+-..+ /og("-1)=l

(where / and g are functions belonging to a suitable generalization of the

classes  E and G defined earlier) collapses.   In other words, the method

from [1] cannot be extended in a straightforward manner to the case when

(S, p) is of dimension >2.   The following theorem (for a similar result for

homeomorphisms see [3]) is the key to our result:
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Theorem.   Let  h: I —► /  be a function where I  is an interval.   If h  is

continuous and if for some m > 2, h       = e, then h is an involution, i.e.,

h°h = e.

Proof.   Let  hix) = hiy).   Then, since  h{m) = e, we have  h(m)ix) =

h      (y) implies  x = y  and thus  h is one-to-one.   Hence, since  h is con-

tinuous, h  is strictly monotone.   First we consider the case where  h is

strictly increasing.   Then from  hix) > x it follows that  x = h     'ix) >

h ix) >...> hix) > x which is a contradiction.   The contradiction also

follows from the assumption  hix) < x.   Hence  hix) = x for all x in  /  and

h°h = e.   Next we consider the case where  h is strictly decreasing.   If x

< y, then  hix) > hiy) and zr   Kx) < h(  \y).   Hence  hr      is strictly increasing.

But  (A(2))(m) = ih{m)){2) = e(2)= e.    Applying the first case to  h(2) we get

h      = e.    Therefore  zr     = e and A is an involution.

In particular, our theorem shows that the function g: I —» /  appearing in

our generalized functional equation  (**)  must be an involution.   Thus  (**)

becomes  nif + f°g)/2 =1   for  zz  even and  in + l)//2 + Un - l)/2)f°g = 1  for

n odd.   Now if we want to extend the result from [l] to the re-dimensional

case we have to have  (**)  since it is equivalent to Axiom (C) of Mielnik

[2].   This shows that there is not a trivial extension to dimension  n using

the procedure from [l].
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