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CONSTRUCTION OF THE INTEGRAL CLOSURE OF A

FINITE INTEGRAL DOMAIN. II

A. SEIDENBERG1

ABSTRACT.   In a previous paper the problem of constructing the integral

closure of a finite integral domain k\x.,..., x 1 = k[x] was considered. A reduc-

tion to the case dtk(x)/k = 1, k(x)/k separable, and zz = 2 was made. A subsidiary

problem was: if k[x\ is not integrally closed, to find a y in k(x) integral over k[x\

but not in it.  This was done for n = 2, but should have been done for arbi-

trary zz.  The extra details are here given.  For the convenience of the read-

er, the full argument is sketched.

In [2] we proposed to construct the integral closure of a finite integral

domain k[xl, • • • , x ] = k[x]  in its quotient field &(*,, • • • , x ). Three

subsidiary problems were formulated, of which the first two were:

1. to give a method for deciding whether k[x]  is integrally closed;

2. in the case k[x]  is not integrally closed, to give a method for finding

an element in k(x) integral over k[x]  but not in it.

We dealt first with the case that  k(x)/k  is separable, and a reduction

to the case degree of transcendency of k(x)/k = 1  was made. It is then easy

to reduce the original problem to the case n = 2, but on p. 7 it was stated,

though incorrectly, that the subsidiary problem 2 was thus reduced. The

slip was (in effect) noted in [l].  This is a note of correction.   Basically we

assume a familiarity with [2], but, for the convenience of the reader, try to

rely on [2] as little as possible.

For another treatment (not quite complete) of the problems here con-

sidered see [5].

1. Preliminaries.  Reference [3] considers some basic construction prob-

lems in a polynomial ring k[X., • • • , X ] = k[X]. If A  is an ideal in  k[X],

given via a finite basis, and b £ k[X]  is given, one can decide whether b £

A   (§5), find the dimension of A (§6), and construct A n k[X^, • • • , X  _ j]

(§23, Note 4; see also [2, p. 17]). Hence if dim A = 0, by contracting A  to

&[X.], one can find a polynomial whose roots are precisely the z'th coordinates

of the points annihilating A. If dim A = r and A = Q.Ci •• ■ O Q    is a nor-

mal decomposition of A  into primary ideals, one can construct the intersec-

tion of the r-dimensional Q. (§17). Given ideals A   and B, one can construct
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AnB,A:B (§§2, 3) and an integer p such that A: Bp= A :Bp+l  (§20).

These constructions hold for any explicitly given field k.

The ring k[xx, ••• , x ] = k[x]  (whose integral closure k[x]     is sought)

is given as k[X]  mod the ideal P of relations satisfied by x/k. Contracting

A = P  to k[X.   , ••• ,X. ], one can test the algebraic independence of x. ,

• • • , x.   over k, and in this way find a transcendency basis of kix)/k  amongst

the x.;  say this is (x,, • • • , x ). If y = fix)/gix) with f, g £ k[X], then

UiP> yz?M - /OO): g(X)p is, as one checks, the defining ideal of (x, y)//fe,

and contracting this to zs[X,, • • • , X , Y]  one finds the defining equation of

y over &(*,, • • • , x ). If y is integral over k[xx, ••• , xj, then (since this

ring is integrally closed) the equation will be an equation of integral depen-

dence. Hence, though we omit some details, for y £ kix), we can test the

integral dependence of y/k[x]  and, if y  is integral, construct an equation

showing this.

In [2] (cf. also [3]) we introduced a condition (P) for explicitly given

fields k that in effect allows us to check for p-independence in k (i.e., if

ax, • • • , a    £ k, whether [kpiax, • • • , a ): kp] = ps). Our problems are to be

solved for k satisfying (P), a condition void for explicitly given k of characteris-

tic 0. (For the role of (P) see [2] and reference 6 in [3].)

Let u be an indeterminate and K = k(u). If yx, • • • , y     are kiu)[x\-

module generators for the integral closure &(&)[x]     of £(u)[x], we may,

multiplying the y . by a denominator a\u) £ k[u], suppose the y. integral

over k[x,'u], hence in &(x)[a]. Writing the y. as polynomials in u, the coef-

ficients are in k[x]    (since k[x] [u]  is integrally closed) and yield a k[x\-

module basis of ze[x]   . Thus in solving our main problem we may freely ad-

join indeterminates  to  k; in particular, we may assume  k  infinite.  By [2,

p. 9]   a similar technique is available for K/k  finite and K  linearly disjoint

from kix)/k, a result we use only for dtkix)/k = 1  and K = kia 'p) with

a £ k.

2. The construction.  Let V be the variety having (x,, ••- , x )  as

generic point over k; k[x]   is integrally closed if and only if V  is normal.

Let r= dim V; we may as well suppose r > 1. Using the mixed-Jacobian

of  Zariski   (cf.   [4, p. 360])   and   (P),   we   can   write   down   an   ideal   A

in   k[X\   for   the   singularities   of   V/k   and   find   its   dimension.    If   V

has   a   singularity   of   codimension   1,   it is certainly   not   normal   (cf. [4]).

Assume    V   has   no   singularity   of   codimension   1.   By   [2, p.  10]   or

the   reference   to   F. K. Schmidt   in   [4,   p. 376],   one   can   construct   an

element c 4 0  in the conductor of k[x]; for kix)/k  separable, see [4, p. 365].

If (c) = (1), which we can decide, then V is normal, and if (c) 4 (1), then by

[2, p. 5]  or [4, p. 363f], V is normal if and only if (c) is unmixed. Let

ic) = QXC\ • • • r\Qs n- •• C\Qt be a normal decomposition of (c) into primary
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ideals with Q., • • • , Q     the primaries belonging to the minimal primes of

(c). We can construct  Q ^ r\---Ci Qs  and compare it with (c); assume (c)  is

mixed. Let d £ gj O - • -O Qs not in (c). Taking note that the local rings of

k[x]   with respect to its minimal primes are the same as the local rings of

k[x\    with respect to its minimal primes, we see that d/c is integral over

k[x\  but not in it. The same reasoning shows that Q. fl- • -n Q /c is the

full integral closure of k[x\. Thus problem 1 is solved and so is the main

problem if  V  has no singularity of codimension 1.

Assuming r> 1, we cut  V  by a generic hyperplane H.  Let zz,, ••• , u

be indeterminates and place z = u.x, + ••• + »  x  .  Then by [4, p. 367], the

ring of this section is k(u, z)[x]. Now let u ..,•••, u. , i = 1, • • • , r — 1,

be indeterminates and place z. = u.,x, + •••+«. x  , i = 1, • • • , r — 1.  Then
r z zl   1 in  n'

k(u, z)[x]   is 1-dimensional.  Assuming the main problem solved for r= 1, let

y, , • • • , y     be a k(u, z)[x]-module basis of  ze(zz, z)[x]   ; we may suppose

y., • •• , y     are integral over k(u)[z, x] = ze(zz)[x]. Further, by an argument

given above, we may suppose y ,,•••, y     to be in k(x); they are, then,

integral over k[x]. It is not to be expected that the variety  V    having (x, y)

as generic point over k is normal; however, it is free of singularities of co-

dimension 1. In fact, suppose p  is an(r- l)-dimensional prime in k[x, y]

such that its local ring k[x, y]     is not regular.  Then also the local ring

ze(zz)[x, y]    is not regular; but (since the z. ate algebraically independent

over k(u) mod/)) this is the same as the local ring of k(u, z)[x, y]    in

k(u, z)[x, y], a contradiction. Hence, by the preceding paragraph, we can

construct k[x, y]   = k[x]   . Thus the main problem is reduced to r= 1. (Cf.

[2, p. 6f].)

Let, then, (x,, • • • , x ) be a generic point for a curve V/k. We (first)

assume  k(x)/k  separable.  By our condition (P), which allows us to check

for ^-independence, we can decide whether a given  element   a   of   k  has a

pth root in  k (p = characteristic); and if it does not, then adjoining a ^p

to  k we get an extension of k linearly disjoint from k(x)4k. As mentioned,

if we can solve our (main) problem over k(a /p)  we can work back to get a

solution over ze. Hence we can freely adjoin pth roots to our base field. We

are given the ideal P  of relations of (xj, • • • , x )/k, via a basis, and we

adjoin the pth roots of the coefficients of the basis elements to k and may

thus suppose they are in k.  The result is that the singularities of V (over

the new ze) become absolute (in effect,   given by the Jacobian rather than

the mixed-Jacobian of the basis).   V may lose its singularities and thus

become normal in the process, but this makes no difference.

Assume for a moment that k  is algebraically closed. Let P  be a point

on  V, say the origin.  If no branch of V  centered at P  has its tangent in

X, = 0 (equivalently: if X, = 0  is not tangent to  V at P), then z^x.) <
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vix.) in every branch centered at P, i = 2, • • • , n, and hence x Jxx   is inte-

gral over the local ring at P. Even if V is tangent to X. = 0  at  P, but as-

suming V  is not in X. = 0, one can compute a p such that xp/xx  is inte-

gral over the local ring at P; in fact obviously p = order of V will do.

Let (x., • • • , x ) be a generic point of V/k, kix)/k separable, and, as

above, with the singularities of V absolute. We subject V to a generic

homogeneous nonsingular linear transformation. Here we adjoin n    indeter-

minates zz.. to k, but, as explained, we can later remove them, so we write

k for ze(zz); and x,, ••• , x    for the "transformed" variables. As mentioned,

we can compute a polynomial g*(X) £ k[X\  whose roots are precisely the

z'th coordinates of the singularities of V. Then, as in [2, p. 20], after ex-

tending k by some peth roots, we get a polynomial g(X) £ k[X]  having

these coordinates as roots with multiplicity 1.  Let  V be the variety having

(Xj, • • • , x ) as generic point over k , the algebraic closure of k. Because

of the nonspecial position of V, by an argument given above, gAx^/g-yix^)

will be integral over the local ring of V/k   of each point of V that is singu-

lar for V/k; it will also be in the local ring of any point P  for which gyiP)

4 0. There remain the simple points (of V) on gj(Xj) = 0.   Because of the

generic direction of X. = 0, no two points of V O (g^Xj) = 0) have the same

z'th coordinates (z > 1). We can compute a polynomial P.(X) having these

z'th coordinates as roots, and, as before, with multiplicity 1.  Then P . =

P ./g. will be a polynomial over k having as roots the z'th coordinates of

the simple points (of V) on gAX x) = 0;  and G.C.D. (g ., P . ) = 1. As above,

we can compute a p  such that z.= g .(x. )(P .(x. ))'°/gj(x1) is integral over

every local ring of V/k , hence integral over k[x], and over k[x\. If V has

singularities, the z. will not all be in k[x], for if P  is one such singularity

and z. £ QiP/V), the local ring, then from giix.XPl(x))p/gl(xA £ Q(P/V)

we get a polynomial in k[Xx - Xj(P), • • • , X    - X (P)]  vanishing over V

and having for linear terms a linear term in X. - X.(P); if this happens for

all  z, then P  is simple on  V by the Jacobian criterion.  Hence at least one

z. is not in k[x\;  it is easy to decide which z.  are in k[x], after converting

this question into one on polynomials.  This solves problem 2 (for dim V = 1,

kix)/k separable, and for an augmented ze).

After a nonspecial homogeneous linear transformation on (x., • •• , x )

over k, we may suppose k[x\  is integral over fe[x.]. Let wx, • • • , w     be a

linear basis of &(x)/ze(x.).   Place Tr w.w. = XzzA 'w\    , where the super-

script indicates conjugationA(x,). Then diw) = det(Tr w . w.) is the discrim-

inant of the basis w,, ■ • • , w     and is 4 0. If w■ = Sa ..w., with a..  £
1' '      m i i]     ) ' z;

k(xx), is another basis of zs(x)A(Xj), then o\w') = (det A   )a'(z^);  here A =

||a..||. Now let w., • • • , w     be integral over &[x,], whence a"(tzO £ ze[xj],

and let w.    be integral over &[x., w., •• • , w  ]   but not in it. Write «z. =
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(fljttZj + • • • + amwm)/c, with a.,c£ k[xA.  We may assume a. = 0 or

deg ai < deg c, i = 1, • • • , m; and at least one fl. 4 0, say fl, ^ 0.  Place

w'2 = z/z2, • •• , w'm= w   . Then d(w') = (a2/c2)d(w), whence deg d(w') <

deg d(w). Starting with w., • • • ,w     in k[x], the process can be applied at

most a\w) times, a bound that does not change even upon successive ad-

junctions to k of indeterminates and pth roots. Hence we soon get to the

integral closure of k[x]  and the main problem is solved, over an augmented

k. As mentioned earlier, we can work back to the original k. Now the main

problem (and with it problem 2) is solved for any explicitly given k  satis-

fying (P) and k(x)/k  separable.

The above construction does not use our condition (F), the condition

that one should be able to factor a polynomial effectively over k. Cf. [2,

pp. 8, 16].

Finally, there is the problem (for r = I) of reducing to the separable

case; this is done on pp. 9—10 of [2] and involves successive adjunctions

of pth roots to the base field:  any such extension is either inner, i.e., for

a pth root a       , a 'p £ k(x), or outer, i.e., a ^p £ k(x); and assuming con-

dition (P) for k, we can decide which by [2, p. 12] or [3, §40]. An outer ex-

tension yields a field k(a  ^p) linearly disjoint from  k(x)/k; and we have

said above how to meet this.  If the extension is inner, the ring to be con-

structed does not change, but we have to compute the ideal of relations for

(Xj, ■•• , xn) over the (new) base field k(a1/p); It a1/p = f(x)/g(x) with /,

g £ k[X], then this is (P, a1/pg(X) - f(X)): g(X)?_1, as one easily checks.

The third subsidiary problem was to count the number of steps. The

above considerations involve no new difficulty in this regard.
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