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ROOK EQUIVALENCE OF FERRERS BOARDS

JAY R. GOLDMAN1, J. T. JOICHI AND DENNIS E. WHITE1

ABSTRACT.   We introduce a new tool, the factorial polynomials, to

study rook equivalence of Ferrers boards.   We provide a set of invari-

ants for rook equivalence as well as a very simple algorithm for decid-

ing rook equivalence of Ferrers boards.   We then count the number of

Ferrers boards rook equivalent to a given Ferrers board.

Introduction.   Let  N denote the set of positive integers.   A board is a

finite subset of  N x N.   Intuitively, a board is an array of squares or cells

arranged in rows and columns, i.e., a board is a subset of the set of squares

of an  n x n chessboard.   We shall frequently utilize this intuitive terminol-

ogy.   We consider two boards to be the same board if one is a translate of

the other, i.e., boards  B and B    are the same if there exist integers a and

b such that B   - {(i + a, j + b): (i, j) € B\.   Thus, only the geometric con-

figuration or the relative positions of the cells is of significance.

For a board  B, \B\  denotes the number of cells in B,   Let r,   be the

number of ways of placing k nontaking rooks (no two in the same row or

column) on the board  B, i.e., the number of /^-subsets of the set  B  such that

no two elements of a ^-subset have the same first component or the same

second component.   When no confusion can arise we suppress the B and

write  r, .   The rook vector of a board B is defined to be the vector r(B) =

(rQ, rj, r2, . . . ) where  rQ = 1.   Note that from some point on all the  r.'s are

zero, in particular  r. = 0  for  i > \B\.   Two boards are called rook equivalent

if they have the same rook vector.

A board  B  is a Ferrers board if there exists a nondecreasing finite se-

quence of positive integers  h j, h2, . . . , h     such that  B = {(i, /): i < c and

j < h.\.   Intuitively, a Ferrers board is a board made up of adjacent solid

columns of cells with a common lower edge and such that the height of the

columns from left to right forms a nondecreasing sequence.   If the heights of

the columns form a strictly increasing sequence, then we call the board an

increasing Ferrers board.   Examples of a Ferrers board and an increasing

Ferrers board are given in Figures 1(a) and 1(b), respectively.
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(a) (b)

Figure 1

The theory of rook equivalence, as part of the theory of permutations

with restricted positions, has its roots in the classical problems of derange-

ments and Menages as well as the works of MacMahon.   For a systematic

exposition of the field as of 1958 we refer to Riordan [8].

The first truly general theorem on rook polynomials was the classifica-

tion of Ferrers boards by Foata and Schutzenberger [3].   They proved that

every Ferrers board is rook equivalent to a unique increasing Ferrers board.

In some special cases they described the specific increasing board.

The principal tools for studying rook equivalence have been combina-

torial arguments and the rook polynomial ^r,x . In fact some of the moti-

vation for the subject concerns the interesting classes of polynomials that

are rook polynomials.

In this paper we introduce a new tool, the factorial polynomials, to study

Ferrers boards.   We provide a set of invariants for rook equivalence as well

as a very simple algorithm for deciding rook equivalence of Ferrers boards.

This allows us to prove the Foata-Schiitzenberger theorem using very simple

constructions.   We then count the number of Ferrers boards equivalent to a

given Ferrers board.

Unless otherwise stated the term board shall always mean Ferrers board.

The term Ferrers is added in the statement of theorems for emphasis.

I. The factorization theorem. For a Ferrers board B with c columns

and column heights h ,<h 2<- ••<h , we define the height vector h(B) to

be h(B) = (h y h2, .. ., h ) and n> c, the n-height vector h (B) to be h (B)

- (h[n\ h[n).h™) where h\n) = 0 for i = 1, 2.n - c and h^>1

h.   ,        »  for i = n - c + I,..., «.    We note that  h (B) = h(B) and that  h (B)

corresponds to thinking of a set of n — c  "empty" columns to the left of B.

The crucial quantities in the study of a Ferrers board  B  are the associated

K-structure vectors  s^(B) which are defined to be  s  (B) = (si"', s2"\ . . . ,

s^) where  s<:n) = b<n) - (i - l).   In the example of Figure 1(a) we have

h(B) = (I, 1, 3, 4), h6(B) = (0, 0, 1, 1, 3, 4) and Sf.(B) = (0, -1,-1,-2,-1,

-1).

The following proposition is immediate.
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1. Proposition.   The n-structure vector of a Ferrers board satisfies the

conditions

(i)   s[n)>0,

(ii)   s\n) > s^\ -1  for i = 2,3,..., n, and

(iii) s(n) = s.("j- 1 if and only if h\n) = h^"\ Conversely, any sequence

of n integers satisfying (i) and (ii) is the n-structure vector of a uniquely

determined Ferrers board.

To study the structure of the rook vectors, we associate with each board

B  the sequence   (p  ix, B))        of ^-factorial polynomials defined by

p  (x, B) = 2?  nr, .(x)      ,   where (x). * x(x - l)(x - 2) • • • (x - i + l)  is the

falling factorial.

The key result of this paper is the

2. Factorization theorem.   // B  is a Ferrers board with c  columns and

has, for n > c, n-structure vector S„(B) = is*-"', • • ■ , s™') and n-factorial

polynomial p  (x, B), then
n

pn(x, B)= Yl(x + s(:n)).
z'=l

ProoL   Let B have height vector h(B) » (h v . .., h ) and w-height vec-

tor h  (B) = ih\n', . . . , h^"').   For x  a positive integer, let B       be the Ferrers

board with  height vector

h(B      ) = (h\, h'   ..., h') = (x1, x, ..., x, x + h     x + h , ..., x + h ).
x,n 1       2' '     n l z c

Thus, B        is obtained from B by attaching an x x n rectangle to the lower

edge of  B   aligning the right-hand columns (Figure 2).   We now count the

number of ways of placing n nontaking rooks on  B        in'two different ways.

B

B
x,n ,-1-

II_
n

Figure 2
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First we break the count up into cases by the number of rooks placed

on  B.    If k rooks are placed on  B, this rules out  k of the columns of the

x x n rectangle and the remaining  n — k rooks can be placed on the remain-

ing x x (n — k) rectangle in  x(x — l)(x - 2) • • • (x — n + k + l) = (x)      ,   ways.

Hence, r, • (x)     ,   counts the number of ways of placing n rooks on  B

such that k of them are placed on  B  and p (x, B) = X"   _r,  • (x)      ,   is the
ft rc^=V/    rC Tt ^ rC

number of ways of placing n nontaking rooks on  B

We can also count the number of rook placings on  B by placing them

in one column at a time from left to right.   A rook can be placed in the first

column in x + h^   = x + sy" ways.   This rales out one row and a rook can be

placed in the second column in x + h2n' - 1 = x + s2n) ways.   Continuing in this

manner we see that  n nontaking rooks can be placed on  B in

n?=1U + sjn)) ways.

Equating the results of our two counts, we have the desired result for

all positive integral values of x, and hence, we have a polynomial identity.

The following two corollaries are immediate.

3. Corollary.   Two Ferrers boards are rook equivalent if and only if,

for some  n, their n-factorial polynomials are equal.

Recall that a multiset is a "set" that can have repeated identical ele-

ments.   More formally, a multiset is a set together with a positive integer

valued function defined on the set (which can be thought of as giving the

multiplicities of the elements).   Since an ra-structure vector s (B) can have

repeated components, the collection of its components forms a multiset.   We

denote this multiset by  S (B).
J       n

4. Corollary. Two Ferrers boards B and B are rook equivalent if and

only if, for some n, S (B) = S (B ).

II. Rook equivalence and enumeration of Ferrers boards. We now char-

acterize the rook equivalence classes of Ferrers boards by picking a unique

representative from, each class. Also we count the number of Ferrers boards

rook equivalent to a given Ferrers board.

5. Theorem (Foata-Schiitzenberger [3])-   Every Ferrers board is rook

equivalent to a unique increasing Ferrers board.

Proof.   First we examine the M-structure vector s (B) of an increasing

Ferrers board  B  with  c columns and column heights   h. < h2 <• • •< h .

Since  h  (B) = (0, 0, .. . , 0, h., . . . , h ) where we have  n - c initial zeroes,

we will have
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s{\B) = (0, -1, -2, . .. , -(« - c - 1), uv u2, ... , uc)

where -(n - c - l) < a, < u2 <• • • < u£.   Furthermore, by Proposition 1, every

such vector is the zz-structure vector of a uniquely determined increasing

Ferrers board.

Now let B be an arbitrary Ferrers board.   We shall construct an increas-

ing Ferrers board B'  rook equivalent to B.   Since rl = \B\, all boards equiv-

alent to  B  have the same number of cells as B.   Let N = \B\ + 1 and con-

sider the /V-structure vector sN(B).   We have s(jN) = 0.   Let -t be the small-

est component of sL \   Then, by Proposition 1, the elements - 1, -2,. ..,

-it - l) must also appear among the components of sN(B).   Define the vec-

tor q by

q = (0, -1, -2, . .., -(t - 1), -t, q\, q2, ..., qN_t_l)

where the q.'s are the elements of SN(B) with (0, -1,..., -t\ deleted and

listed in nondecreasing order. By the discussion of the preceding paragraph,

q is the /V-structure vector of an increasing Ferrers board B . Since SN(B)

= SN(B'), B and B' are rook equivalent by Corollary 4. Furthermore, since

— t is the minimum element of S„(B), it follows that B is the only increas-

ing Ferrers board rook equivalent to B.

The constructive nature of the preceding proof allows us to go much fur-

ther and actually count the set of Ferrers boards equivalent to a given board

B.   In order to do this, we assume familiarity with the basic concepts of per-

mutations of a multiset, a theory developed by Foata [2].   For a very clear

exposition of this development, see Knuth [6].

The vector sN(B) is a permutation of the multiset SN(B).   By Corollary

4, a board B    is equivalent to  B  ii and only if  sN(B ) is also a permutation

of SN(B).   Hence, counting all boards equivalent to  B  is the same as count-

ing all permutations of SN(B) subject to the conditions (i) and (ii) of Prop-

osition 1.   Since N = \B\ + 1, we may replace (i) by the condition that the

first element of the permutation is always zero.     From  N > \B\, it also fol-

lows by an elementary count, that s\      < 0 for all  i.

Now using the Foata correspondence [6, p. 27, Theorem B] between mul-

tiset permutations in one and two line notations, our problem is equivalent

to counting the number of permutations of SN(B) in two line notation such

that the left-most bottom element is zero and the pair       cannot occur for

m < k - 1.   This is an easy count using binomial coefficients and leads to

the following

6.   Theorem.   // B is a Ferrers board and -t is the smallest component

Gl s\b\ + 1^' tf)en the number of Ferrers boards rook equivalent to  B  is equal

to
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where j.  is the multiplicity of —i  in  ri„| + .(B).

Since the vector •s|b| + i(E)  is obtained by adjoining many zeroes to the

height vector, this often leads to the preceding expression having a large

number of factors.   To make computation more convenient we look at the in-

creasing board in an equivalence class and consider  S (B)  where  c is the

number of columns of B.    This leads to the following

7. Corollary.   // B  is an increasing Ferrers board with c columns, then

the number of Ferrers boards rook equivalent to  B  is

(ai + a2+\(a2 + ai+l\ (au-l + au+l\

where  a.  is the multiplicity of i  in S (B)  and u = s     .

We can in fact do more than count the equivalence class.   Given a board

B, by using the usual backtrack algorithm [5], we can list all permutations

of S (B) satisfying the conditions of Proposition 1.   This gives us an effec-

tive procedure for listing all boards equivalent to  B.

III.   Some special boards.   We call a board  B   an m-jump board if hiB)

= im, 2m, 3m, . . . ).

8. Proposition.   Let B  be an (m + l)-jump board with n — 1  columns.

Then the n-factorial polynomial is given by p ix, B) = x^"'m) where x^n,m'

= xix + m)(x + 2m) • • • (x + (n — l)m) is the m-step rising factorial.

Proof.   We have hn(B) = (0, m + 1, 2(m + l),..., (n - l)(m + l)) and thus

5 (B) = (0, m, 2m,. . ., (n — l)m) and the result follows from the factorization
n

theorem.

This proposition gives us an interesting combinatorial interpretation of

the m-step rising factorial as a factorial polynomial.   It is well known [7]

that x("'m'  is of binomial type, i.e.,

"    /n\
(x + y)(ri.m) =   £   /      \x(k,m)y<.n-k,m)

4 = 0 U'

This can be proved combinatorially using our interpretation of x^n'm\   We

also mention that x(n'm>  can be proved to be of binomial type using a combi-

natorial argument in the spirit of reluctant functions [7].
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For the 1-jump board B  with n - 1  columns we have pn(x, B) = xn =

2 1/.,•(*)     ,.   The well-known identity x" = 2,S(n, k)-(x),, where S(n, k)
fc    /c 72 ̂  rZ

are Stirling numbers of the second kind (see [l], [9]), yields  rfe = S(n, n - k).

We observe, by Corollary 7, that this board is not rook equivalent to any other

Ferrers board.

For the 2-jump board  B  with n — 1   columns we have pn(x, B) = x(n'

(= x(n), the rising factorial).   Since  s  (B) = (0, 1, 2,. .., n - l), the new vec-

tor (« — 1, n — 2,... , 1, 0) determines a rook equivalent board, namely, the

(n — l) x n rectangle.   By Corollary 7, the number of boards rook equivalent

to B is  2-3"-2.

For Z72 > 2, by Corollary 7, the number of boards rook equivalent to the

m-jump board with  n — 1  columns is  2"~   .

IV.   Comments.   We can, in general, define the factorial polynomial for

an arbitrary board B  and the combinatorial interpretation in terms of Bx

carries over.   However, there does not seem to be a factorization in cases

other than the Ferrers boards.

Riordan's "associated" rook polynomial [8] 2.r,x* of a board B

can also be interpreted in terms of B by a modified definition of rook

placing.

The Foata-Schutzenberger correspondence [A, p. 38] between the 1-jump

board and partitions of a set can be generalized to correspondences between

general Ferrers boards and partitions of a set with special restrictions.

A formal development of "factorial hit polynomials" analogous to the

classical formulas [8] can be given where the operator A  (A/(x) = f(x + l) -

f(x)) replaces the differentiation operator D.

The theory of rook numbers of zzz-jump boards can be developed from both

analytic and combinatorial viewpoints and has an intimate connection with

the theory of binomial enumeration [7].   This will be published elsewhere.
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