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BOUNDS FOR NEARLY BEST APPROXIMATIONS

RUDOLF WEGMANN

ABSTRACT. Let X be a uniformly convex space and ¥ be the inverse
function of the modulus of convexity &-). Assume here that ¥ is a concave
function. Let V be a linear subspace of X and let f in X be such that |f||
= l=minf|f=v||: v € V}. Then for 0< 8 <1 and for v in V with |[f—o|<
1+ 8, it follows that [v] < K - ¥(8).

Let T be a compact Hausdorff-space and V a finite-dimensional syb-
space of C(T, X). When V has the interpolation property (Pm) with dim V =
m - dim X, then the same type of estimate as above holds.

Let X be a uniformly convex normed linear space [1], i.e., for each ¢
with 0 <€ <2 there exists a 8(¢) > 0 suchthat x, y € X, ||x| <1, |ly|] <1,
and ||x — y|| > € imply ||(x + y)/2|| <1 - 8(¢). The function 8(-) is called the
modulus of convexity of X. Without loss of generality we shall always as-
sume that 8(.) is monotone nondecreasing. Then an inverse function ¥ can
be defined by

(1 ¢(30):=sup{e: O<€§2,5(e)<50}

for 6, > 0. Obviously, ¥ is monotone nondecreasing. From &(e) < €/2 it fol-
lows that l/f(50) >0 for 50 > 0.

One can replace &) by a monotone increasing convex function 51(-),
such that 0 <8 () <&e) for 0 <€ <2 and 1 <lim inf,_; &e)/5 () < oo
Then ¥ is concave and continuous.

Let V be a subspace of X, and let { be in X such that ||f|| =1 and 0

is the best approximation for / by elements of V. A question of some prac-

€—0

“‘nearly best approximations’’ v in V,

tical interest is that of how fast the
with |/~ | <1+ 8, approach 0 when & — 0.
This note considers also the analogous question for subspaces V of

C(T, X), T compact, and gives estimates for ||v]| in terms of the function .

Theorem 1. The diameter D(C) of every convex subset C of the spheri-
cal shell R(8):=1{x € X : 1 =8 <||x|| < 1} is <d).

A result of this type was given by Fan and Glicksberg [2], but they did
not relate the bound on D(C) to the modulus of convexity.

Proof. From (1) it follows that &(e) > &, for € > {8 ). So, |lx]| <1,
Iyl <1, and |G +y)/2] > 1 =8 imply [x - y] < (8).
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Let C be a convex subset of R(8). Then for x, y € C, x £ y, the seg-
ment [x, y] is in R(5). Define y4:=x+60(y-x). Then [x]| <1, |lypl <1,
and ||(x + y5)/2|| >1 -8 for 0< 6 < 1. Since X is uniformly convex this
last inequality is strict for all 6 with at most one exception 6. Thus we ob-
tain |x = yg| < ¢(d) for all 6 # 6, and by continuity also for 6. Since x,
y in C are arbitrarily chosen, D(C) < y{8) is proved.

Theorem 2. Let V be a linear subspace of X, let { be in X such that
I/l =1=mint|f =2l : v € VL. Then for 0<8<1 and all v eV with |f -
<1+ 8 it follows that |v| < 2¢(8).

Proof. The set C:={v eV :|f-v| <1+ 8} is a convex subset of the
shell {x € X : 1 <||x~ /]| <1+ 8} Using Theorem 1 to estimate the diameter
of C, we obtain

ol = llv = o} < D(C) < (1 + )1 - 1/(1 + 8))
= (1 + 8)Y8/(1 + 8)) < 2u(d).

Let P, be the metric projection on V, i.e. the mapping which assigns
to each f in X its best approximation PV(/) by elements of V. It is well
known that P, is uniformly continuous on bounded sets [5, p. 17]. From

Theorem 2 we can obtain bounds for the modulus of continuity of PV‘

Corollary 1. Let V be a linear subspace of X. Let f, g in X be such
that 2||f - gl <E(f) : = minf|f - v| : v € VL Then

1P = Pyl < 2E(Ny2] f - gl /E().

Proof. Without loss of generality we assume PV(/) =0, so that E(f) =
/1. Using | P,(g) - gll <|If - gl + E(f) we can estimate

E(N <P e) ~ I <P e) —gll + 117 - gll < E()+2]|f - gl.-
It follows that
L<Py(e) = FI/E() < 1+ 21 - gll /E(D),
and by Theorem 2,

1Py o) = PN < 2E(7) + w21/ - gll /E(/)).
Let T be a compact Hausdorff space and C(T, X) be the space of con-

tinuous functions f: T — X provided with the maximum norm ||f|| : =
max{”/(t)ux i€ T}. A subspace V of C(T, X) is said to have the interpola-
tion property (Pm) if for every m distinct points ty,ovnytin T and ele-
ments y;, ...,y in X there exists v in V such that U(li) =y; for i=1,

., m [6, p- 201]. When the real dimensions are in the relation dim V =
m - dim X, then there exists exactly one such v, and each function v in V which
vanishes at m distinct points on T vanishes identically.

The following theorem is analogous to Theorem 2.

Theorem 3. Let V be a linear subspace of C(T, X) which has property
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(P ) with dim V=m - dim X. Let [ in C(T, X) be such that ||| =1=
mintl|f = v|| : v € V. Then there exist numbers K, >0, K, > 1 depending on
{ and V such that for all v in V with ||f-v|| <1+ 8 it follows that

@ Il < K $(K,9).

If Y is a concave function, then
) ol < Ko,

Proof. Let 7 be the dimension of V over the real field. According to
[6, p. 202] the element 0 is a best approximation for [/ by elements of V if
and only if there exist extremal points x"{, ey x: of the unit ball {x* e X*:
[x*|| < 1} of the dual space X*, points t, .., t, in T and positive num-
bers A, with Ele A;=1 such that

(4) ]él ij’;(v(t,.)) =0 foreach v in V,
) xj.‘(/(z].))=|l/||:1 for j=1,..., h.

The number » is in therange m+ 1< h<n+ L.
Since V has property (Pm) with dim V =m . dim X from v € V and
v(t].) =0 for j=1, ..., b it follows that v = 0. Hence max{”v(t}.)” tj=1,
., b} is a norm on V. Since V has finite dimension this norm is equivalent

to the original one, i.e., there is a constant K, so that
6) ||U||SK4 max{HV(tj)" :j=1,...,h for vin V.

From ||f(t].) - v(tj)ll <1+ it follows that |x>]'.<(f(tj) - v(tj))l <1+3d. For
each fixed index % in 1 < k< » we obtain from (4) and (5)

2 A+ A e ) = 3 )\I.xjf([(t].) - ut)))

j#k j#k

Il

IN

> A7) - e D < Y A+ 9),
S i T

and consequently

*
7 A () < (Z )\].) d.
iFk
The number K : = max{Ej#k()\j//\k) tk=1,..., h} depends on { and V,
but not on v. So we obtain from (7)
x:(v(tk))s K5 +0 for k=1,..., h
For both points, x, =0 and x, = v(z,), we have ||f(z)) - x,[| <1+ and
x:(xk) < K - 8, hence by (5) x:(/(tk) -x,) > 1 - K;8. Consequently
(f(2)) = x,)/(1 + &) is in the convex subset C:=tx € X:|lx| <1, < (x) >



BOUNDS FOR NEARLY BEST APPROXIMATIONS 255

(1- KSS)/(I + 8)} of the spherical shell {x € X : 1~ (K5 +1).8/(1+0<
[|x]l < 1}. Using the estimate of Theorem 1 for the diameter D(C) we obtain
(K5 +1)6
T1+6
for k=1, ..., h. Together with (6) this yields the estimate (2). If ¢ is a
concave function then we can use ¥(A8) < AY{8) for A > 1 to obtain (3).
For X a real Hilbert space one can choose yA8) =& if dim X =1 and ¥(6) =
26" if dim X >2. We note that C is norm-isomorphic to the Euclidean R?. The

ozl < (1 +8)D(C) < (1 +8)¢( ) < 24K + 1)3)

space V of the polynomials of degree < 7 has the interpolation property
(Pn“) in the real as well as in the complex case. So we obtain from Theo~

rem 3 the following

Corollary 2. Let T be a compact subset of R (or C) with at least n + 2
points and let V be the space of polynomials of degree < n restricted to T.
Let [ be in C(T, R) (or C(T, Q) such that ||f|| = 1 = minl|f-v|, v e VL
Then there exists a number K dependent on T, n and [, such that for all v
in V with |{=v| <1+8 it follows that ||v|| < K-8 (or |v]| < K8%).

In the real case this is a result of Freud [3]. The complex case improves
a result of Poreda, who proved in [4] only |v|| = 0(5P) for 0< B <%.

Now we show that the estimate (3) is sharp in the sense that the func-
tion ¥ may not be replaced by another one ¥, such that /(8)/¥(8) — 0 as
0 — 0. We make the hypothesis that i is concave and sharp in the following
sense: There exists a constant K> 0 such that for all x in X and x* € X*
with [|x*|| = 1= ||x|| = x™, from ||y]| =1+ 6 and *(x = y) = 0 it follows that
Iy = = > K(d).

We note that Hilbert-spaces have this property, when ¢ is specified as
before Corollary 2. So the estimates of the corollary are sharp.

To prove the sharpness of (3) we proceed in the following way. Let V
be a subspace of C(T, X) as in Theorem 3. We construct a suitable / in
C(T, X) which fulfills the hypotheses of Theorem 3 such that for all &> 0
there exists v in V suchthat |[f—=v| <1+ 8 and ||v|| > KY(5).

Let ¢y, ..., ., be different points of T. The mapping v — (u(tl),

. v(tm+1)) carries V onto an n-dimensional subspace of the (m + 1)-fold
product W:= X x -+ x X, which has dimension (m+ 1) . dim X > 7. So there
exists a nontrivial linear functional w* on W which vanishes on the image

. * . *
of V. Hence there exist x; in X" and real /\]. such that

*
(8) z}: Ax(he)) =0
for all v in V. By suitable normalization we can reach ||x>:" =1, ’\j->- o,
A =1

Since X has finite dimension there exist X, in X so that ij [=1=
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x’;x].. We put /(t].) =x; and extend [ to an element of C(T, X) such that for
ann>0
1/C) ~ oDl < maxtllf(2)) = (e )] = j=1, ..., m+ 1}

holds for all ¢ in T and v in V with ||v] <7. We omit the lengthy but ele-
mentary details of this construction. For this / we have |f|| =1 =minl||/ - v|:
v eVl

If X =R, it follows from |f—v|| =1+ that |/(z].) ~ v(t].)l =1+98 for
at least one j, and so [v| > Iv(t].)l = 0.

In case dim X > 2 we construct a v # 0 in V with
(9) x*]fv(tj) =0 for all j.

Let vy, ..., v_ be abasis of V, then (9) leads with v = 2 a,v, to the sys-

tem of equations

(10) 3 avxf.vv(,j) 0, j=1,...,m+1,
v

which has a nontrivial solution @, ..., @ , since the rank of the matrix of
(10) is at most n ~ 1 because of n> m + 1 and (8). Therefore a v #0in V
with (9) exists.

If |/-Av]=1+8 then ||[(t].) —)\v(t].)H =1+ 6 for at least one j. From
this it follows ||)w(t].)|| > Ky(8) by hypothesis and so [|]Av| > KyAd).

From Theorem 3 one can obtain a bound for the modulus of continuity of the met-
ric projection similar to that of Corollary 1. It may be noted that the bound of
Corollary 1 is not sharp in general. For a Hilbert-space of dimension > 2 it
yields | P,(/) ~ P,(g)]| = O(|lf - gl ) which is less sharp than the well-known
estimate [[P,(/) - P (g)] < |l - el
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