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DISK-LIKE PRODUCTS OF A CONNECTED CONTINUA. II

CHARLES L. HAGOPIAN

ABSTRACT.   R. H. Bing [3] proved that every atriodic, hereditarily

decomposable, hereditarily unicoherent continuum is arc-like.  Using this

theorem, the author [5J showed that   X  connected continua  X and  Y   are

arc-like when the topological product X x Y   is disk-like.   In this paper

we consider products that have a more general mapping property.  Suppose

that  X and  Y   are   X  connected continua and that for each c > 0, there

exists an £-map of X x Y   into the plane.  Then X  is either arc-like or

circle-like.  Furthermore, if X is circle-like, then  Y   is arc-like.  Hence

X x Y   is either disk-like or annulus-like.

Throughout this paper a continuum is a nondegenerate, compact, con-

nected metric space. A continuous function f of a continuum X is called

an  e-map  if for each point y  of f(X), the diameter of /""   (y) is less than e.

A continuum  X is arc-like if for each positive number e, there exists

an e-map of  X onto an arc.   Circle-like, disk-like, and annulus-like continua

are defined in the same manner.  Here a disk is a  2-cell and an annulus is a

planar continuum that is homeomorphic to the product obtained by crossing

an arc with a circle.

A chain is a finite sequence  L „ L.L     of open sets such that

L .C\L . /= 0  if and only if  \i — j\ < 1. If L .   also intersects  L   , the sequence

is called a circular chain.   Each  L . is called a link.   A chain is called an

t-chain if the diameter of each of its links is less than  f.   An c-circular

chain is defined similarly.  It follows from Urysohn's lemma that a continuum

X is arc-like (circle-like) if and only if for each  t > 0, X  can be covered by

an f-chain (e-circular chain).

A continuum  X is said to have property  A at a point x of X if every sub-

continuum L of X that contains x is irreducible between x and some other point of L.

A continuum is decomposable if it is the union of two proper subcon-

tinua. A continuum is hereditarily decomposable if all of its subcontinua

are decomposable.  If every pair of points in a continuum   X lies in a hered-
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itarily decomposable subcontinuum of  X, then  X is said to be A connected.

A continuum T is called a triod if it contains a subcontinuum Z such

that T - Z is the union of three nonempty disjoint open sets. When a con-

tinuum does not contain a triod, it is said to be atriodic.

A continuum is unicoherent provided that if it is the union of two sub-

continua  E and  F, then  £ OF is connected.  A continuum is hereditarily

unicoherent ii all of its subcontinua are unicoherent.

For any two metric spaces (X, ift) and (Y, eft), we shall always assume

that the distance between two points p , = (x., y ,) and p2 = (x2, y ) of the

topological product  X x Y  is defined by

p(pv p2) = (OAUj, *2))2 + (#yi, y2))2)M.

We shall denote the closure and the boundary of a given set Z by CI Z

and Bd Z respectively.

Lemma 1.  Suppose that X and Y are continua, that X is not unicoher-

ent, and that  v., v,, and tv,   are distinct points of Y and R  is a continuum

such that  \v,, v A C R C Y - \v, j.   There exists an e > 0  szzcA r^ar: z'/ g z's

«« c-map of X x Y  into the plane, then some element of \g(Xx \v.\),

g(X x {f,!), g(X x iv,D!  separates the plane between the other two.

Proof. Since X is not unicoherent, there exist continua E and F and

nonempty disjoint closed sets A and B such that X = E\J F and A (jB -

E n F. Define C and C2 to be open subsets of X such that A C C., B C

Cy CI CjO CI C2 =0.

Let tA and cf> be distance functions for X  and   V respectively.  Define

c to be a positive number less than  xp(C., C ), i/KE,  F - (C. U C )),

i/KF,  E - (Cj UC )), 9S(vj, tv2), and cf>(v,, R).  It  follows directly from para-

graphs 7 through 12 in the proof of Theorem 1 in [5] that if g is an e-map

of X x Y into the plane, then  g has the required condition.

Theorem 1.   Suppose that  X and Y  are continua and that for each e > 0,

there exists an cmap of X x Y  into the plane.   Then  X is atriodic, every

proper subcontinuum of X is unicoherent, and Y  is unicoherent when X  is

not unicoherent.

ProoL It follows from paragraphs 2 through 4 in the proof of Theorem 1

in [5] that X is atriodic. By the argument presented in paragraphs 5 through

13 in the same proof, every proper subcontinuum of  X is unicoherent.

Suppose that neither  X nor   V is unicoherent.   There exist continua  R

and  T  and nonempty disjoint closed sets   C and  D  such that   Y = RUT and

COD = Rr\T.   Let  c  and d be points of  C and  D respectively.   There ex-

ist points  v and  w of  Y-(CUD)  and continua  V and   W such that  \d, v\

C V C R - ic|  and  \d, w\ C W C T - \c\.
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Note that for any three points of \v, w, c, d\, some element of \R, T\

contains two and misses the other.   According to Lemma 1, there exists a

positive number e such that if g is an e-map of X x Y into the plane E  ,

then for any three elements of  \g(X x {v\), g(X x \w\), g(X x \c\), g(X x \d\)\,

one must separate  E     between the other two.

Letting c£> denote the metric on Y, we define e to be a positive num-

ber less than e, d>(v, T), cp(w, R), and r/3(c, V U W). Let h be an e'-map of

X x Y into E2. Since h(X x R) nh(X x \w\) = 0 and h(X x \c\)nh(X x W)

= 0, h(X x {^0 separates h(X x \c\) from h(X x \w\) in E . Furthermore,

since MXx T)nh(Xx \v\) = 0 and MX x ic!)n/>(Xx V) = 0, A(X x US)

separates  h(X x jcj) from h(X x i^l) in E .

Define  H to be the union of  h(X x |fi?i) with all components of  E    -

h(X x \d\)   that meet h(X x \v, w\).   Note that  H is a connected set that con-

tains h(X x \v, w\) and misses A(X x \c\).   Thus A(X x \c\) does not separ-

ate h(X x if!) from A(X x \w\) in  E  . It follows that one element of

\h(X x \v|), MX x Jtz'OI separates the other from MX x icS).  We suppose with-

out loss of generality that hiX x \v\) separates   hiX x \w\) from h(X x \c\).

Since A(X x T) is a continuum in  F   - MX x \v\) that contains MX x \c\)

and  MX x \w\), we have a contradiction.  Hence   Y  is unicoherent when  X

is not unicoherent.

Lemma 2.  // X  z's a continuum that is not unicoherent and if every

proper subcontinuum of X  is unicoherent, then  X  is not separated by any

of its subcontinua.

Proof.  Assume there is a continuum H in  X such that X - B is not

connected.   Since  X is not unicoherent, there exist continua  E and  F  and

nonempty disjoint closed sets A  and B such that X = F U F and A u B = E n F.

The set  F — E is connected; for otherwise, the closure of some compo-

nent  K of  F - E  would meet both  A  and  B  [7, Theorem 50, p. 18] and

EuK would be a proper subcontinuum of  X that is not unicoherent.  Note

that both  E  and  F   = C1(F — E)  are irreducible between  A   - F   C\A and

B'=F'nB.   Hence  H intersects   A'ijB'.

Assume that H n A' / 0  and that HnB'=0. Since tfuE and HuF"

are proper subcontinua of X, the sets HC\E and HC\F'  are connected.  Let

q be a point of B    and define  Y to be the continuum (H nE)u(^-component

of E - B). Define Z to be the continuum (H OF ) u(?-component of F — H).

It follows that   YuZ   is a proper subcontinuum of X and  YD Z is not

connected, which is impossible.  Thus if HC\ A' ^0, then  HC\B' /= 0.

By the same argument, Bn A   4- 0  when  HnB   4 0- Hence  H meets

both   A'  and  B'.   It follows that  H 3 E or  H D F1.

Assume without loss of generality that  E lies in H.   Since   F    is ir-
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reducible between  A    and  B , it follows that  H C\ F    is not connected.  Let

P  and  Q be  nonempty closed disjoint sets such that  Hr\ F   = P U Q.  There

exists a component  N of  F   — H  such that  CI N meets both   P  and  Q.

Since  X - H is not connected, H\jN is a proper subcontinuum of X.   But

since HnCl N is not connected, we have a contradiction.  It follows that

X is not separated by any of its subcontinua.

Theorem 2.  // X  z's an atriodic A connected continuum that is not uni-

coherent and if every proper subcontinuum of X  is unicoherent, then X  is

circle-like.

Proof.  We begin by showing that  X is hereditarily decomposable.   Then

using a decomposition theorem of Vought's and results of Bing's involving

arc-like continua, we construct an f-circular chain that covers  X.

Assume that  X  contains an indecomposable continuum  /.  Since  X is

A connected, / is a proper subcontinuum of  X [7, Theorem 139, p. 59].  Let

A and  B  be distinct composants of /.  Let  H be a hereditarily decompos-

able subcontinuum of  X that meets  A and B.   Since  H does not contain /,

it follows that Hnl is not connected and HUl - X.

Suppose that  Hnl is the union of three nonempty disjoint closed sets

C, D, and  E.   Define   C , D , and   E    to be disjoint open subsets of X  con-

taining  C, D, and  E respectively.  It follows from [7, Theorem 50, p. 18]

that  l\jC  (j D   U£    contains a triod; which contradicts our hypothesis.

Hence  Hnl is the union of two closed connected sets in  A\J B.

Since  H (J I = X, it follows that  A and  B  are the only composants of

/ that can be joined by a hereditarily decomposable subcontinuum of  X;

which contradicts the assumption that  X is  A connected.  Hence   X is he-

reditarily decomposable.

It follows from Lemma 2 and [8, Theorem 2] that  X has a monotone

upper semicontinuous decomposition  C|  each of whose elements has void

interior and whose quotient space is a circle  S .   Let / denote the quotient

map of  X onto  S    associated with  y.  If  G is a nondegenerate element of

y, then  G is an atriodic, hereditarily decomposable, hereditarily unicoher-

ent continuum, and therefore has property  A  at one of its points [3, Theorems

8 and 9].

Define p.   and p2  to be distinct points of S .   Let  U.   and  U    be the

components of  S   — \p     p   j.   For  z = 1   and  2, let y.  be the collection con-

sisting of all elements of ^ that lie in  /~  (CI U.).

Note that for z = 1  and 2, there exists an uncountable subcollection

J ■ of fa .  such that for each element  F of J"., there is a sequence of ele-

ments of Cf.  converging to  F  such that infinitely many elements of this

sequence separate  F from  /"  (pj) and infinitely many separate  F from
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/_1(p2) in /-1(C1 (/.). For i = 1 and 2, let F; be an element of 3\. For

i = l and 2, if F. is not degenerate, define x. to be a point at which F.

has property  A; otherwise, define  x{  to be the only point in  F„

Now let e be a positive number.   Define  Vj  and   V.  to be the compo-

nents of S    — \f(F.), f(F2)S.  For  z = 1   and  2, the atriodic, hereditarily de-

composable, hereditarily unicoherent continuum /"  (CI Vi) is arc-like [3,

Theorem 11]. Moreover, each /"  (CI V.) has property A at Xj  and x2 and

is irreducible between these points. Hence there exist e-chains H., H2,.. .,

B     and  K., K2,..., K     covering /""  (CI V,) and /"  (CI V2), respectively,

such that Xj  is a point of W l - CI B2) r>(Kn - CI K   _ ,), *2  belongs to

(H    -C1B      ,)n(K, - CI K_), and some element of B,, H.,... , H
m m— 1 1 2" V       2' '      m

misses every element of K., K-,.... K [3, Theorems 13 and 14], [6, Lemma (proof)].

Let M be an open subset of (B j - CI H2)n(Kn - CI Kn_j) that con-

tains x,.  Let /V be an open subset of (B    - CI B      ,) C\(K   - CI K,) that
1 ^ mm— iii

contains x2.   Then  X-(MUiV) is the union of nonempty closed disjoint

sets A and B  such that B  contains /~  (CI VJ-(MuN) and is covered

by K,, K2,..., K .   An e-circular chain covering X is (ADB^U/M,

AHH.,..., AnH      ,,(AnH   ) UN, (BDK,)uN, B HK-, . . . , (BDK )UM.
2' ' m— 1' m' 1 2' ' x n

Theorem 3.  Suppose that  X and Y are k connected continua and that

for each e > 0, there exists an e-map of X x Y z'w/o rAe plane.   Then X is

either arc-like or circle-like.   If X is circle-like, then   Y  is arc-like.

Proof.  According to Theorem 1, X is atriodic and every proper subcon-

tinuum of X is unicoherent.

First assume that  X is unicoherent.  It follows that   X is hereditarily

decomposable [5, Theorem 2].  Hence  X is arc-like [3, Theorem ll].  It

follows from [4, Theorem 7] that  X is not circle-like.

Now suppose that X is not unicoherent.  By Theorem 2, X is circle-

like.  Note that   Y is atriodic, hereditarily unicoherent (Theorem 1 \ and

hereditarily decomposable [5, Theorem 2].   Thus   Y is arc-like.

Theorem 4.  // X  and Y are A connected continua and if for each

€ > 0, there exists an e-map of X x Y  into the plane, then  X x Y  is either

disk-like or annulus-like.

Proof.  If / is an e/2-map of  X onto a space  A  and if g is an e/2-map

of Y onto a space B, then the function h of X x Y onto  A x B defined by

^((*» y )) = (f(x\ giy)) is an f-map. Hence this theorem follows from Theorem 3.

The cone over the dyadic solenoid is a disk-like continuum that cannot

be embedded in  E    (Euclidean  3-space) [2].

Question.   If a product of two continua is disk-like, must it be embed-

dable in   E   ?
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Note that since the product of any two arc-like continua is embeddable

in  E    [l], the answer to this question is "yes" if the answer to Question

1 of [5] is "yes".

The author wishes to thank Eldon Vought for comments that led to the

improvement of this paper.
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