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THE DERIVATIVE OF A  BOUNDED HOLOMORPHIC

FUNCTION IN THE DISK

SHINJI YAMASHITA

ABSTRACT.   Let a nonconstant function / be holomorphic and bounded,

l/l <1   in D: |z|<l.  We shall estimate f*(z)=(l- |z|2)|/'(z)|/(l - |/(z)|2)

at each point  z e D ((1) in Theorem 1).  The function d appearing in the es-

timate concerns the sizes of the schlicht disks on the Riemannian image J

of D  by /.   Boundary properties of / and /*  will be stated in Theorems 2

and 3; use is made of the cluster sets of d.

1.  Results. Consider the metric

8(w, z) = \w — z\/\l — zw\       (z, w e D)

in   D (8(w, z) = [w, z] in [8, p. 510 ff.]).  Denote  D(z, t) = \w e D; 8(w, z)<t\

(z e D, 0 < t < l).  By f  we always mean a nonconstant function holomorphic

and bounded,  \f \ < 1   in D.   Let d(z) = d(z, f) be the maximum of  t such that

j,  covering D, contains the schlicht D(f(z), t) of center j(z) e f;  if such a

t does not exist we set d(z) = d(z, f) = 0. We then have 0 < d(z) <  1  at each

z e D and further,  d(z) = 1  at (each) z 6 D  if and only if /   is schlicht from

D  onto D.   Plainly,  d(z) = 0 if and only if f'(z) = 0.

Theorem 1.   At each z e D we have

(1) d(z, f)<f*(z)<\8d(z, f)\V\

Since /   (z) < 1   at each z e D  by the lemma of H. A. Schwarz and G.

Pick, the right-hand side of (1) has the meaning if d(z, f) < 1/8.   Theorem 1

is analogous to the result of Ch. Pommerenke [7, Theorem l] who uses the

Euclidean distance to measure the sizes of the schlicht disks on J.

By an angular domain at a point C,  of V: |z| = 1,  we mean a triangular

domain whose vertices are  C   and two points of D.   By an admissible arc at

C, we mean a continuous curve  A : z = z(t) e D  (0 < / < l), lim(_ 1 z(t) = C

tangent at £ to a chord of F at £.   We call <£ £ T of first kind if

lim inf   f*(z) = 0
z—»£,zeA

for each admissible arc  A at £,  while we call £ € F of second kind if

lim inf  _^ y       ./   (z) > 0 for each angular domain A  at (.   A point ( eF is
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called of third kind if lim infz_r,>zeD f*^ > 0- Let VA S2^^ and S 1^>

be the sets of all points of first, second, and third kind, respectively. Plain-

ly, S (f)C S2(f) and S^f) O S2(f) =0  (empty).  Our next results are two.

Theorem 2.   The union Sj(/) U$2(/)  is o/ /zwear measure  2n and resi-

dual [2, p. 75] ore r,  and the union Sj(/) U 5  (/)  is residual on F.

Let

o(h/, z) = Vi log !(1 + 5(u/, z))/(l - 8(w, z))\

be the non-Euclidean distance of w and z of D.  Let /(w, z; f) (w,z e D)

be the non-Euclidean length of the Riemannian image by /  of the (Euclidean)

line segment joining w and z.

Theorem 3.   If A  is an angular domain at £ e S (f),  then there exist an

open disk  U containing C  and a constant k1 > 0 such that k^a(w, z) <

l(w, z; f) for each pair of points w, z € A n U.   If C £ $»(/)>  t^en there exist

an open disk  V containing C,   and a constant k2 > 0 such that k2a(w, z) <

l(w, z; f) for each pair of points w, z 6 D n V.

2. Proof of Theorem 1.   We have only to prove (1) for z with d(z) > 0.

The function

,   v        f((w + z)/<X  +zw))-f(z)
g(w) = —!—-—--1-

1 -f(z)f((w + z)/(l +zw))

is holomorphic and bounded,   |g| < 1  in   \w\ < 1   with g(0) = 0 and  |g (0)| =

f*(z) ^ 0.  Therefore the function hiw) = g(w)/g'i0) = w + a2w2 + .. •  is bound-

ed by  M = l/|g'(0)|   in   \w\ < 1.  To the function  h we may apply the result [8,

Corollary, p. 26l] deduced from the theorem [8, Theorem VI.10, p. 259] due to

J. Dieudonne [3, p. 349 ff.].  Then the Riemannian image of   \w\ < 1   by  77 con-

tains the schlicht disk D(0, 1/8M) = D(0, |g'(0)|/8), whence the Riemannian

image of  \w\ < 1  by g contains the schlicht disk D(0, \g (0)|  /8).  Therefore

J contains the schlicht disk D(f(z), |g'(0)|2/8), whence f*(z)2/8 = |g'(0)|2/8

< d(z).  This proves the right-hand side of (1).  Let F be the inverse of / in

D(f(z), d(z)) such that Fif(z)) = z.   The function

_,   v       F((d(z)w + f(z))/(l + f(z)d(z)w)) -z
G\w) =-■-■-

1 - zF((d(z)w + f(z))/(l + f(z)d(z)w))

is holomorphic and bounded, |G| < 1 in \w\ < 1 with G(0) = 0. Consequently,

by Schwarz' lemma, d(z)/f (z) = |G (0)| < 1, from which follows the left-hand

side of (1).

3. Proofs of Theorems 2 and 3.  We begin with

Lemma 1.   For each pair w, z e D,
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(2) \d(w)-d(z)\<o(w,z).

Proof.   (The present proof, due to the referee, is more concise than the

original one.) Without loss of generality we may assume that d(z) < d(w).

Then,  d(w) < 1, for otherwise,  d(z) = d(w) - 1.  We may further assume  o(w,z)

< d(w), for otherwise, (2) is trivial. Since 8(f(w), f(z)) < 8iw, z) < a(w, z)

< d(w), f(z) lies in the disk D(f(w), d(w)). Hence the two disks D(f(w),d(w))

and D(f(z), d(z)) must possess a common boundary point v e D,  so that

8(f(w), v) = d(w) and 8(f(z), v) = d(z).  It follows from d(z) < d(w) that

a(f(z), v) < a(f(w), v). Now, making use of the fact that 8(f(w), v) =

tanh a(f(w), v), 8(f(z), v) = tanh a(f(z), v), the fact that tanh A - tanh B <

A — B for A > B > 0,  the triangle inequality for the metric  o,  and the Schwarz-

Pick lemma, we obtain the following chain of inequalities:

a\w) - d(z) = 8(f(w), v) - 8(f(z), v) < oif(w), v) - oif(z), v)

< oif(w), f(z)) < oiw, z).

This completes the proof of the lemma.

Let  F  be a subset of D whose closure  E  in the plane contains a point

£ £ F.  Then we set C Ad, £) = f}Ljd(E n U), where  U ranges over all open

disks containing L,.  The cluster set  Cp{d, £) relative to  E  lies in the

closed interval [0, l]. We set CA(d, £) = \JAC^d, 0 and RT(d, O =

C^^C^d, £), A ranging over all angular domains at C, and A  ranging over

all admissible arcs at C- Let   K(d) be the set of all points  (eT  such that

CA(d, £,) = CA(o\ £) for each angular domain A  at C  and let j(d) be the set

of all points  C € ^loO satisfying  CA(d, £) = CD(d, £,).  Finally, let  L(d) be

the set of all points (eF  such that  C   (d, £) = IIT(a', £).

Lemma 2.   j(d) C K(d) = L(d).

Proof. ](d) C K{d) follows from the definition of J(d). Since each angu-

lar domain at C, e L(d) contains a terminal part of a chord of F at £, it fol-

lows from C (d, £) = tlT(d, £) that CA(d, £) = CA(ti, £) for each angular

domain A at £, that is, C £ Kid). Thus L(rf) C K(fl"). To prove Lid) 3 KU),

we remark that d is uniformly continuous as a map from D endowed with the

metric a(. ,•) into [0, ll. The proof is therefore the same as that of [l, Lem-

ma].

Proof of Theorem 2.   First of all, we may replace  /   (z) by  diz, f) in the

definition of S .if), j = 1, 2, 3;  this is a consequence of (1).  We shall prove

(3) K(d)CSl(f)uS2if);

(4) ]id)CSxif) u53(/).
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By Lemma 2,  Kid) = L(d). If £ e K(d) and 0 € CA(d, £), then 0 £ WT(d, £),

whence £ £ Syif), while if £ £ Kid) and 0 ^ CAU, £), then 0 ^ CAU, £)

for each A  at £, whence £ £ £.,(/).  We thus obtain (3).   If £ £ /U) and  0 £

CDU, C). then 0 £ fl^a7, £) = CAU, £) = CDid, £) because fid) C Lid).

Therefore £ £ S^f).  II £ 6 fid) and  0 4 CDid, £),  then £ £ S3(/).  We thus

have (4). Now, according to the results on arbitrary functions (cf. [6, Theo-

rems 1 and 2]),   Kid) is of measure  2tt and fid) is residual on 1\ Hence

Kid) 3 fid) is residual.  Theorem 2 now follows from (3) and (4).

Remark.  Let a real function a in D be uniformly continuous with re-

spect to a.  Then f(q) C K(q) - Liq) by the identical reasoning as in the

proof of Lemma 2.  Assume further that  q(z) > 0 for all z £ D.   If a replaces

/    in the definitions of S .(f) (j = 1, 2, 3); and if the resulting sets are de-

noted by S.(a) (; = 1, 2, 3), then Theorem 2 for the present a remains valid

by the same proof.  Theorem 1 reveals the link between /     and  d,  the spe-

cial case of q.

Proof of Theorem 3.  Let   U be an open disk containing £ such that  kf-

inf     .„,, /  (z) > 0.  It then follows that

(5) kAd£\/(l - |f|2)< \f'(0\ |«|/(1 - |/(,f)| 2)

for each £ £ A n (7.  Since /^.cKw, z) is obtained by integrating the left-hand

side of (5) along the geodesic line connecting w and z, k.cA.w, z) is less

than the integral of the left-hand side along the Euclidean line segment join-

ing z and w,  being contained in the convex set A n U.   We thus obtain

k.afw, z) < l(w, z; f).  The proof of the rest is similar.

4. A special class of functions.   We consider the distribution of S.(f) of

a special /.  Suppose

(6)        // (y il\2) dxdy<+°°    (1 <p< +-. * = * + *y>-
|z|<l\i -  |/(z)|2/

Consider the case p = 1.  By G. Fubini's theorem with  V2 < r, we obtain

^l-\f(r£)\2

for a.e. (almost every) £ on V. Now (7) means that the non-Euclidean length

of the Riemannian image of half the radius at £ by /   is finite.   Hence,  / has

the radial limit f(£) £ D at £, which is the angular limit by the theorem of

E. Lindelof [2, Theorem 2.3, p. 19L By a geometrical consideration on d

combined with (1) we have

(8) lim     d(z,f)=     lim     f *(z) = 0

for each angular domain A  at £;  in effect,  diz, f) < Sifiz), f(£)) for 2 £ A
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near £,•  Thus,  S.if) is of measure   2tt.  The case  p > 1.   The function

|/'(z)|/(l - |/(z)|2) = exp o log!|/'(z)|/(l - |/(z)|2)|

is nonnegative subharmonic in  D;   actually, the exponential function is con-

vex and even logf \f (z)|/(l — |/(z)|   )\  is subharmonic because

\dx2     dy2)    g\l-\j(z)\2)        \l-\fiz)\2)

at each z = x + iy with / (z) 4 0 (cf. [5, p. 83])-   By the result of F. W.

Gehring [4, Theorem l], for a.e. (eT we have

(1 - Izl)1 V(z)|
lim-___-= u

^,Z,A       1-|/U)|2

for each angular domain A  at £.  Consequently,

(9) lim   (l-|z|)(l/")-1/*U) = 0

z— {,, zed

toe each angular domain A  at L,.  Hence  /     tends to zero rapidly as (9) shows

in this case. It should be noted that for p = 2 (hence for p > 2),  we have (7)

and, hence, (8) for each £ e F except for a set of capacity zero on F (cf.

[9, Theorem for ;' = 3l).  Therefore F - S^(f) is of capacity zero.
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