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THE DERIVATIVE OF A BOUNDED HOLOMORPHIC
FUNCTION IN THE DISK

SHINJI YAMASHITA

ABSTRACT. Let a nonconstant function f be holomorphic and bounded,
Ifl <1 in D: |z|<1. We shall estimate f*(z)= (1 - |z|2)|f @)/ (1 - |£)]?)
at each point z € D ((1) in Theorem 1). The function d appearing in the es-
timate concerns the sizes of the schlicht disks on the Riemannian image §
of D by f. Boundary properties of f and f* will be stated in Theorems 2

and 3; use is made of the cluster sets of d.

1. Results. Consider the metric
Nw, 2) = |lw - z|/|1 -2zZw| (2, we D)
in D (6w, z) = [w, z] in [8, p. 510 ff.]). Denote D(z, t) = {w € D; 8w, z)<t}

(z €D,0<t<1). By { we always mean a nonconstant function holomorphic
and bounded, || <1 in D. Let d(z)=d(z, ) be the maximum of ¢ such that
¥, covering D, contains the schlicht D(f(2), t) of center f(z) € f. if such a
¢ does not exist we set d(z) = d(z, /) = 0. We then have 0< d(z) < 1 at each
z €D and further, d(z) =1 at (each) z € D if and only if { is schlicht from
D onto D. Plainly, d(z) = 0 if and only if /'(z) = 0.

Theorem 1. At each z € D we have

1 dz, ) < [7(2) <{8d(z, VA

Since f*(2) <1 at each z € D by the lemma of H. A. Schwarz and G.
Pick, the right-hand side of (1) has the meaning if d(z, /)< 1/8. Theorem 1
is analogous to the result of Ch. Pommerenke {7, Theorem 1] who uses the
Euclidean distance to measure the sizes of the schlicht disks on ..

By an angular domain at a point ¢ of T': |z| = 1, we mean a triangular

domain whose vertices are ¢ and two points of D. By an admissible arc at
¢ we mean a continuous curve A: z = z(1) €D (0 <1< 1), lim, ,, 2() = ¢,
tangent at { to a chord of " at ¢ We call { €I of first kind if

lim inf f*(Z) =0

z—0,z€A
for each admissible arc A at {, while we call ¢ €1” of second kind if

lim inf__, g'ZEA/*(Z\ > 0 for each angular domain A at {. A point { €1 is
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called of third kind if lim inf, _y ., ["(z)> 0. Let S (1), S,(/) and S,(/)
be the sets of all points of first, second, and third kind, respectively. Plain-
ly, $5(1)CS,(f) and (/) NS, (/) =@ (empty). Our next results are two.

Theorem 2. The union S () US,(f) is of linear measure 2m and resi-
dual [2, p. 75) on T, and the union S|(f) U S,(f) is residual on T

Let
olw, 2) = Y% log(1 + 8w, 2))/(1 - 8w, 2))

be the non-Euclidean distance of w and z of D. Let [(w, z; ) (w,z € D)
be the non-Euclidean length of the Riemannian image by f of the (Euclidean)

line segment joining w and z.

Theorem 3. If A is an angular domain at { €S,(f), then there exist an
open disk U containing { and a constant ky > 0 such that kjo(w, z) <
I(w, z; {) for each pair of points w,z €A NU. If { € Ss(f), then there exist
an open disk V containing { and a constant k, > 0 such that kyo(w, z) <
1w, z; ) for each pair of points w,z € D N V.

2. Proof of Theorem 1. We have only to prove (1) for z with d(z) > 0.
The function
2lw) = /((w_+ 2)/U + zw)) - [(2)
1 - 7(2)f((w + 2)/(1 + Zw))
is holomorphic and bounded, |g| <1 in |w|<1 with g(0) = 0 and |g'(0)| =
{*(z) £ 0. Therefore the function h(w) = gw)/g'(0) = w + a2w2 + ++- is bound-
edby M=1/|g'(0)] in |w| < 1. To the function » we may apply the result (s,
Corollary, p. 261] deduced from the theorem [8, Theorem VIL.10, p. 259] due to
J. Dieudonné [3, p. 349 ff.]. Then the Riemannian image of |w|<1 by b con-
tains the schlicht disk D(0, 1/8M) = D(0, |g'(0)|/8), whence the Riemannian
image of |w| <1 by g contains the schlicht disk D(0, |g'(0)]2/8). Therefore
F contains the schliche disk D(/(2), |g'(0)|%/8), whence f*(2)%/8 = |g'(0)|¥/8
< d(z). This proves the right-hand side of (1). Let F be the inverse of { in
D(f(z), d(2)) such that F(f(z)) = z. The function

) - FUdEw + 1)/ + [Ddw)) - =
1 - 2F((d(2)w + (/1 + [Dd2)w))

is holomorphic and bounded, |G| <1 in |w| <1 with G(0) = 0. Consequently,

by Schwarz’ lemma, d(z)/f*(z) = |G'(0)| < 1, from which follows the left-hand
side of (1).

3. Proofs of Theorems 2 and 3. We begin with

Lemma 1. For each pair w, z €D,
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) |d(w) - d(2)| < Aw, z).

Proof. (The present proof, due to the referee, is more concise than the
original one.) Without loss of generality we may assume that d(z) < d(w).
Then, d(w) < 1, for otherwise, d(z) = d(w) = 1. We may further assume o(w,z)
< d(w), for otherwise, (2) is trivial. Since 8(f(w), f(2)) < §(w, 2) < o(w, z)
< d(w), {(2) lies in the disk D(f(w), d(w)). Hence the two disks D(f(w), d(w))
and D(f(z), d(z)) must possess a common boundary point v € D, so that
8(f(w), v) = dw) and 8(f(2), v) = d(2). It follows from d(z) < d(w) that
o(f(2), v) < o(f(w), v). Now, making use of the fact that 8(f(w), v) =
tanh o(f(w), v), 8(f(2), v) = tanh o(f(2), v), the fact that tanh A — tanh B <
A — B for A>B >0, the triangle inequality for the metric o, and the Schwarz-

Pick lemma, we obtain the following chain of inequalities:

dw) - d(z) = 8(f(w), v) - 8(/(2), v) < a(f(w), v) - olf(2), v)
<olf(w), [(2)) < olw, 2).

This completes the proof of the lemma.

Let F be a subset of D whose closure E in the plane contains a point
¢ €T'. Then we set Cp(d, {) =, dE n U), where U ranges over all open
disks containing {. The cluster set CE(d, () relative to E lies in the
closed interval [0, 1]. We set C24(d, ¢) = U, Cald, £) and HT(d, ) =
N, Cyd, &), A ranging over all angular domains at { and A ranging over
all admissible arcs at ¢. Let K(d) be the set of all points { € I' such that
cd, &) = Cald, {) for each angular domain A at ¢ and let J(d) be the set
of all points ¢ € K(d) satisfying C4(d, {) = C(d, {). Finally, let L(d) be
the set of all points { € I' such that cd, ) = ., ).

Lemma 2. J(d) C K(d) = L(d).

Proof. J(d) C K(d) follows from the definition of J(d). Since each angu-
lar domain at £ € L(d) contains a terminal part of a chord of I' at ¢, it fol-
lows from C4(d, ¢) = 1,.(d, {) that cAd, ) = Cypld, {) for each angular
domain A at ¢, that is, { € K(d). Thus L(d) C K(d). To prove L(d) D K(d),
we remark that d is uniformly continuous as a map from D endowed with the
metric (-,) into [0, 1]. The proof is therefore the same as that of [1, Lem-
mal.

Proof of Theorem 2. First of all, we may replace f*(z) by d(z, f) in the
definition of S]. (f), j=1, 2, 3; this is a consequence of (1). We shall prove

3) K(d) s, (/) us, ()
(4) J@) s, (1) us ().
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By Lemma 2, K(d) = L(d). If { € K(d) and 0 € C*(d, {), then 0 €11..(d, ¢),
whence £ €S,(f), while if { € K(d) and 0 ¢ CcA(d, {), then 0 ¢ Cyld, &)
for each A at {, whence ¢ 652(/). We thus obtain (3). If £ € J(d) and 0 €
Cpld, &), then 0 €14, £) = C4(d, £) = Cpy(d, ¢) because [(d) C L(d).
Therefore ¢ €S (/). If { € (@) and 0 ¢ C},(d, {), then { €S,(f). We thus
have (4). Now, according to the results on arbitrary functions (cf. [6, Theo-
rems 1 and 2]), K(d) is of measure 27 and J(d) is residual on I". Hence
K(d) D ](a') is residual. Theorem 2 now follows from (3) and (4).

Remark. Let a real function g in D be uniformly continuous with re-
spect to 0. Then J(g) C K(q) = L(g) by the identical reasoning as in the
proof of Lemma 2. Assume further that g(z) > 0 for all z € D. If g replaces
/* in the definitions of Sj(/) (j=1,2,3), and if the resulting sets are de-
noted by . (¢) (=1, 2,3), then Theorem 2 for the present g remains valid
by the same proof. Theorem 1 reveals the link between ™ and d, the spe-
cial case of gq.

Proof of Theorem 3. Let U be an open disk containing ¢ such that &

=
inf_ _sny {*(z) > 0. It then follows that

) k |dE)/(1 = |E1D) < |£1(O)] 1d€1 /(1 — 1&)]?)
for each £ € A N U. Since kla(w, z) is obtained by integrating the left-hand

side of (5) along the geodesic line connecting w and z, klo(w, z) is less
than the integral of the left-hand side along the Euclidean line segment join-
ing z and w, being contained in the convex set A N U. We thus obtain

k olw, 2) < I(w, z; f). The proof of the rest is similar.

4. A special class of functions. We consider the distribution of $,(f) of

a special f. Suppose

b
(6) ff < ‘/ (z)l 2> dxdy < + o0 (ISP<+°°’ z=x+iy).

|2]<1 1 - |f(z)]
Consider the case p = 1. By G. Fubini’s theorem with % < 7, we obtain
1 /'@l
7 — 2 dr<+o
St

for a.e. (almost every) { on I'. Now (7) means that the non-Euclidean length
of the Riemannian image of half the radius at { by f is finite. Hence, [ has
the radial limit f(£) € D at £, which is the angular limit by the theorem of
E. Lindeldf [2, Theorem 2.3, p. 19]. By a geometrical consideration on 4
combined with (1) we have

(8) lim d(z, )= lim [Mz)=0

z—'g,zeA z—-{, zeA

for each angular domain A at {; in effect, d(z, {) <8(f(2), [({)) for z €A
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near £. Thus, Sl(/) is of measure 27. The case p > 1. The function
17" =)/ (1 = lf(z)lz) = exp o logl|/"(2)]/(1 = !/(Z\lzﬂ

is nonnegative subharmonic in D; actually, the exponential function is con-

vex and even logl|f'(2)|/(1 - |f(z)]?)} is subharmonic because

92 2 ( /@) ) ( /' (2)] >2
(ax2 ' ayz)k’g ) - e
at each z = x + iy with f'(z) £ 0 (cf. [5, p. 83]). By the result of F. W.
Gehring [4, Theorem 1], for a.e. { €' we have
(1= DY)
1 =0
cles - |G

for each angular domain A at {. Consequently,

) lim (1-|zD/2=1%z) =0

z. 0, zeA

for each angular domain A at {. Hence /* tends to zero rapidly as (9) shows
in this case. It should be noted that for p = 2 (hence for p > 2), we have (7)
and, hence, (8) for each { € I" except for a set of capacity zero on I (cf.

[9, Theorem for j = 3]). Therefore I" - Sl(/) is of capacity zero.
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