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REMARKS ON DILATIONS IN Lp-SPACES

M. A. AKCOGLU! AND L. SUCHESTON?

ABSTRACT. Let (X, §, 1) be a nonatomic measure space. It is
shown that there exists a unitary operator U on L2 = LZ(X’ ¥, n),a

function f € Lz’ and a nonnull set 4 in § such that n_l}::’lei/ di-

verges on A.

The following remarks on dilations of contractions are quite simple,
but nevertheless they seem to us worth making. In particular, since, by a
result of D. L. Burkholder [6], the pointwise ergodic theorem for nonpositive
contractions in L, fails, Proposition 1 seems of interest.

The oldest and best known dilation theorem, due to Sz. Nagy (see, e.g.,
[7]), asserts that if T is a contraction on a Hilbert space H, then there
exists a larger Hilbert space K=H @ H' and a unitary operator U in K so that

T"f = PU"/
for each integer n > 0 and for each [ € /f, where P: K— H is the projec-
tion from K to H. We first observe that the following version of Nagy’s
theorem is also true.

Remark 1. If H =L (X, ¥, ) then K may be chosen to be K =
Lz( Y, Q, v), where Y D X, @ >F (in particular X € (3) and v is an exten-
sion of p.

The proof is the same as the one given, e.g., in [7, p. 16]: One only
chooses each component Hilbert space to be an L, space. If H and K are
related to each other as in Remark 1, then the projection P: K — H will be
called a geometric projection and the associated dilation will be called a
geometric dilation. A geometric projection preserves pointwise convergence
since it is just the restriction of an L, function to a smaller part of the do-
main of definition. Consequently Remark 1, combined with Burkholder’s re-
sult [6, p. 128] that there are contractions of L, for which the pointwise

ergodic theorem fails, gives the following result.

Proposition 1. Let (X, F, ) be a nonatomic measure space. There
exists a unitary operator U on L, = LZ(X’ f, W, a function | € L, and a
nonnull set A € ¥ so that n"lz;;lUi/ diverges on A.
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Recently dilation theorems were obtained [1], [2], [S] for positive con-
tractions T on Lp spaces, 1 < p <oo. In these theorems the dilated space
is also an Lp-space, U is a positive (but not necessarily invertible) isom-
etry, and P is a conditional expectation E. Since the conditional expec-
tation does not preserve pointwise convergence, it would be desirable to
replace E by a geometric projection. It is, however, observed below that a

large class of Lp contractions do not admit of geometric dilations.

Proposition 2. Let 1 <p <eo. (i) If T is a contraction (or only a
bounded linear operator) on the L space of a Borel space (X, ¥, ®), and
if Txy* Txg =0 whenever A and B are disjoint sets in f, then T is of
the form Tf = h(f o ¢), where b € L, and & is a measurable point-trans-
formation. Let T be a contraction on Lp. Assume that there exist disjoint
sets A, B in T such that Txa- Txpg £0. (ii) If p £ 2, then T does not
have a geometric dilation to an isometry. (iii) If p = 2, then T does not

have a geometric dilation to a positive isometry.

Proof. The proof of (i) is similar to the proof of Banach’s theorem on
representation of Lp isometries, p # 2 (see, e.g., [9, p. 333]). Case (ii)
follows from Banach’s theorem and the fact that a point-transformation pre-
serves disjointness of sets. To prove case (iii), it is enough to note that
Banach’s result remains true for positive isometries on L,, as was observed
by A. Ionescu Tulcea [8].

Proposition 2 implies that T can be dilated geometrically to an isom-
etry (to a positive isometry if p = 2) only if T is already induced by a
point-transformation.

For applications of the dilation theorem to the maximal ergodic theorem
see [1], [4] and [3]. In this connection, we note that in [4] there is a
technical error just before formula (7). It should be clear, however, that
this can be corrected trivially without changing this formula or any of the
results in [4]: Vhile the supremum need not be reached, there exist mutually
disjoint sets E_ such that S(T)f is arbitrarily close to |2°° 1 F A (T)fl

and this is sufﬁc1ent
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