REMARKS ON DILATIONS IN L_{τ} -SPACES

M. A. AKCOGLU¹ AND L. SUCHESTON²

ABSTRACT. Let (X, \S, μ) be a nonatomic measure space. It is shown that there exists a unitary operator U on $L_2 = L_2(X, \S, \mu)$, a function $f \in L_2$, and a nonnull set A in \S such that $n^{-1}\sum_{i=1}^n U^i f$ diverges on A.

The following remarks on dilations of contractions are quite simple, but nevertheless they seem to us worth making. In particular, since, by a result of D. L. Burkholder [6], the pointwise ergodic theorem for nonpositive contractions in L_2 fails, Proposition 1 seems of interest.

The oldest and best known dilation theorem, due to Sz. Nagy (see, e.g., [7]), asserts that if T is a contraction on a Hilbert space H, then there exists a larger Hilbert space $K = H \oplus H'$ and a unitary operator U in K so that $T^n f = PU^n f$

for each integer $n \ge 0$ and for each $f \in H$, where $P: K \to H$ is the projection from K to H. We first observe that the following version of Nagy's theorem is also true.

Remark 1. If $H = L_2(X, \mathcal{F}, \mu)$ then K may be chosen to be $K = L_2(Y, \mathcal{G}, \nu)$, where $Y \supset X, \mathcal{G} \supset \mathcal{F}$ (in particular $X \in \mathcal{G}$) and ν is an extension of μ .

The proof is the same as the one given, e.g., in [7, p. 16]: One only chooses each component Hilbert space to be an L_2 space. If H and K are related to each other as in Remark 1, then the projection $P\colon K\to H$ will be called a geometric projection and the associated dilation will be called a geometric dilation. A geometric projection preserves pointwise convergence since it is just the restriction of an L_2 function to a smaller part of the domain of definition. Consequently Remark 1, combined with Burkholder's result [6, p. 128] that there are contractions of L_2 for which the pointwise ergodic theorem fails, gives the following result.

Proposition 1. Let (X, \mathcal{F}, μ) be a nonatomic measure space. There exists a unitary operator U on $L_2 = L_2(X, \mathcal{F}, \mu)$, a function $f \in L_2$ and a nonnull set $A \in \mathcal{F}$ so that $n^{-1} \sum_{i=1}^n U^i f$ diverges on A.

Received by the editors August 15, 1974.

AMS (MOS) subject classifications (1970). Primary 47A35.

Key words and phrases. Lp-space, contraction, isometry, dilation.

¹ Research supported by NRC Grant A3974.

²Research supported by NSF Grant GP34118.

Recently dilation theorems were obtained [1], [2], [5] for positive contractions T on L_p spaces, $1 \le p < \infty$. In these theorems the dilated space is also an L_p -space, U is a positive (but not necessarily invertible) isometry, and P is a conditional expectation E. Since the conditional expectation does not preserve pointwise convergence, it would be desirable to replace E by a geometric projection. It is, however, observed below that a large class of L_p contractions do not admit of geometric dilations.

Proposition 2. Let $1 \leq p < \infty$. (i) If T is a contraction (or only a bounded linear operator) on the L_p space of a Borel space (X, \mathcal{F}, μ) , and if $T_{X_A} \cdot T_{X_B} = 0$ whenever A and B are disjoint sets in \mathcal{F} , then T is of the form $T_f = h(f \circ \phi)$, where $h \in L_p$ and ϕ is a measurable point-transformation. Let T be a contraction on L_p . Assume that there exist disjoint sets A, B in \mathcal{F} such that $T_{X_A} \cdot T_{X_B} \neq 0$. (ii) If $p \neq 2$, then T does not have a geometric dilation to an isometry. (iii) If p = 2, then T does not have a geometric dilation to a positive isometry.

Proof. The proof of (i) is similar to the proof of Banach's theorem on representation of L_p isometries, $p \neq 2$ (see, e.g., [9, p. 333]). Case (ii) follows from Banach's theorem and the fact that a point-transformation preserves disjointness of sets. To prove case (iii), it is enough to note that Banach's result remains true for *positive* isometries on L_2 , as was observed by A. Ionescu Tulcea [8].

Proposition 2 implies that T can be dilated geometrically to an isometry (to a positive isometry if p=2) only if T is already induced by a point-transformation.

For applications of the dilation theorem to the maximal ergodic theorem see [1], [4] and [3]. In this connection, we note that in [4] there is a technical error just before formula (7). It should be clear, however, that this can be corrected trivially without changing this formula or any of the results in [4]: While the supremum need not be reached, there exist mutually disjoint sets E_n such that S(T)f is arbitrarily close to $|\sum_{n=1}^{\infty} 1_{E_n} A_n(T)f|$, and this is sufficient.

REFERENCES

- 1. M. A. Akcoglu, A pointwise ergodic theorem in L_p spaces, Canad. J. Math. (to appear).
 - 2. _____, Positive contractions of L_1 spaces, Math. Z. (to appear).
- 3. M. A. Akcoglu and H. D. B. Miller, Dominated estimates in Hilbert space (to appear).
- 4. M. A. Akcoglu and L. Suchestin, On the dominated ergodic theorem in L_2 space, Proc. Amer. Math. Soc. 43 (1974), 379-382.
- 5. , On convergence of iterates of positive contractions in L_p space, J. Approximation Theory 13 (1975), 348-362.
- 6. D. L. Burkholder, Semi-Gaussian subspaces, Trans. Amer. Math. Soc. 104 (1962), 123-131. MR 25 #2426.

- 7. B. Sz.-Nagy and C. Foias, Analyse harmonique des opérateurs de l'espace de Hilbert, Masson, Paris; Akad. Kiadó, Budapest, 1967; English rev. transl., North-Holland, Amsterdam; American Elsevier, New York; Akad. Kiadó, Budapest, 1970. MR 37 #778; 43 #947.
- 8. A. Ionescu-Tulcea, Ergodic properties of isometries in L^p -spaces, 1 , Bull. Amer. Math. Soc. 70 (1964), 366-371. MR 34 #6026.
 - 9. H. L. Royden, Real analysis, 2nd ed., Macmillan, New York, 1968.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TORONTO, TORONTO, ONTARIO, CANADA

DEPARTMENT OF MATHEMATICS, OHIO STATE UNIVERSITY, COLUMBUS, OHIO 43210