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REMARKS ON DILATIONS IN  L -SPACES
p

M. A. AKCOGLU1 AND L. SUCHESTON2

ABSTRACT. Let (X, J, p.) be a nonatomic measure space. It is

shown that there exists a unitary operator U on L = LAX, 5, p), a

function f £ L and a nonnull set A in J such that 72~ l"_.Ulf di-

verges on /I.

The following remarks on dilations of contractions are quite simple,

but nevertheless they seem to us worth making.   In particular, since, by a

result of D. L. Burkholder [6], the pointwise ergodic theorem for nonpositive

contractions in  L 2 fails, Proposition 1 seems of interest.

The oldest and best known dilation theorem, due to Sz. Nagy (see, e.g.,

[7]), asserts that if  T is a contraction on a Hilbert space  H, then there

exists a larger Hilbert space   K = H © H    and a unitary operator U in K so that

Tnf = PUnf

for each integer n > 0 and for each  / £ H, where   P: K —> H is the projec-

tion from   K to  H.   We first observe that the following version of Nagy's

theorem is also true.

Remark 1.   If H = L AX, J, p)  then   K may be chosen to be  K =

LAY, £,, v), where   Y 3 X, f-> D A (in particular  X e y  and v  is an exten-

sion of p.

The proof is the same as the one given, e.g., in  [7, p. 16]:  One only

chooses each component Hilbert space to be an  L_   space.   If H and  K are

related to each other as in Remark 1, then the proj ection  P: K —> H will be

called a geometric projection and the associated dilation will be called a

geometric dilation.   A geometric projection preserves pointwise convergence

since it is just the restriction of an  L2 function to a smaller part of the do-

main of definition.  Consequently Remark 1, combined with Burkholder's re-

sult   [6, p.  128]  that there are contractions of  L     for which the pointwise

ergodic theorem fails, gives the following result.

Proposition 1.    Let (X, A, p)  be a nonatomic measure space.   There

exists a unitary operator  U on L   = L (X, A, p), a function f £ L2 and a

nonnull set  A e J   so that  n~   X"    [F/ diverges on  A.
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Recently dilation theorems were obtained [l], [2], [5] for positive con-

tractions T on L spaces, 1 < p < °°. In these theorems the dilated space

is also an L -space, U is a positive (but not necessarily invertible) isom-

etry, and P is a conditional expectation E. Since the conditional expec-

tation does not preserve pointwise convergence, it would be desirable to

replace E by a geometric projection. It is, however, observed below that a

large class of  L     contractions do not admit of geometric dilations.

Proposition 2.   Let   1 < p < <*>.  (i) // T is a contraction (or only a

bounded linear operator)  on the  L     space of a Borel space (X, ,T, p), and

if TV*  • Ty„ = 0 whenever A  and B  are disjoint sets in J, then  T is of

the form  Tf = hif o <p), where h e L    and cf, is a measurable point-trans-

formation.  Let  T be a contraction on L .  Assume that there exist disjoint

sets A,   B  in J  such that  Ty. ■ Ty    4 0.  (ii) If p 4 2, then T does not

have a geometric dilation to an isometry.  (iii) If p = 2, then T does not

have a geometric dilation to a positive isometry.

Proof.   The proof of (i) is similar to the proof of Banach's theorem on

representation of  L     isometries,  p 4 2 (see, e.g., [9, p. 333]).   Case (ii)

follows from Banach's theorem and the fact that a point-transformation pre-

serves disjointness of sets.  To prove case (iii), it is enough to note that

Banach's result remains true for positive isometries on  L      as was observed

by A. Ionescu Tulcea  [8].

Proposition 2 implies that  T can be dilated geometrically to an isom-

etry   (to a positive  isometry if p = 2) only if T is already induced by a

point-transformation.

For applications of the dilation theorem to the maximal ergodic theorem

see [l], [4]  and [3].  In this connection, we note that in [4]  there is a

technical error just before formula (7).  It should be clear, however, that

this can be corrected trivially without changing this formula or any of the

results in  [4]:  While the supremum need not be reached, there exist mutually

disjoint sets  E^  such that  S(T)/ is arbitrarily close to   |S°°    lg  A  (T)f\,

and this is sufficient.
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