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ON AN OPERATOR EQUATION INVOLVING MAPPINGS

OF MONOTONE TYPE

CHAITAN P. GUPTA

ABSTRACT.   Let  X be a real reflexive Banach space and  A: X — 2A

a maximal monotone mapping such that the graph  G(A) of  A   is weakly-

closed in  X X X     and   0 £/4(0).  Also, let   T: X — 2A     be a quasi-bounded

coercive mapping of type   (M) such that the effective domain D(T) of  T

contains a dense linear subspace  X    of  X.   Then it is shown that for each

* f I
co e X    there exists a u   e X such that   co e Au + Tu   and the subset  \u  6 X|

co e Au + Tu\ is a weakly-compact subset of A".   An application to an ellip-

tic nonlinear boundary value problem of Neumann type is given.

The aim of this paper is to prove a theorem on the existence of solutions

for an equation of type  Au + Tu = f, where  A  and  T are nonlinear mappings

with their domains in a real reflexive Banach space  X  and range in the dual

Banach space  X  .  We shall also give an application of this result to the prob-

lem of existence of solutions of a nonlinear elliptic boundary value problem

of Neumann type in   L  (Q), where  fi is a bounded domain in an Euclidean

space  R"  with smooth boundary.  We may mention that our results also apply

to boundary value problems of variational type for quasilinear elliptic systems

with strongly nonlinear lower order terms.  These applications will appear in

a subsequent paper elsewhere.  We employ the following definitions:  If X is

a real reflexive Banach space and  X    is its dual Banach space, we denote

by   (co, x)  the duality pairing between an element gj  in  X    and x in X.   For

a multivalued mapping  T: X —• 2       (the set of subsets of X  ), we denote by

D(T), the effective domain of T, the subset of  X defined by  D(T) = {x e X|
V *

Tx 4 0\. A mapping  T: X — 2       is said to be monotone if its graph  G(T) =

\[x, o)]| x £ D(T), co £ Tx\ is a monotone subset of X x X    in the sense that

(cjj - co2, *j - xj > 0 for all  [xj, coj £ G(T), [x 2, co J £ G(T).  A monotone

mapping  T: X —> 2       is said to be maximal monotone if its graph  G(T) is

maximal among all the monotone subsets of  X x X    in the sense of inclusion.

Definition 1. Let X be a reflexive Banach space and XQ  a dense linear
x *

subspace of X.   Let  T: X —> 2       be a given mapping with effective domain

D(T) such that  X. C D(T).  Then   T is said to be of type (M) with respect to

X    if the following hold:
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(M.) T is upper semicontinuous from each finite dimensional subspace

F of X    to X    endowed with weak topology.

(fvL) For each x £ D(T), Tx is a bounded, closed and convex subset of X .

(M,) Suppose that  ia! is an infinite sequence in   X , u an element of

X and  co an element of X    such that \u \ converges weakly to a in  X

(written  a. —> a), co. £ Tu . with   (co., v) —• (co, v) for every v € X    and

lim sup(co., a.) < (co, a). Then u £ D(T) and co £ Ta.

If in (M,) we demand, in addition, that  (co., a.) —> (at, a), then  T  is

called a generalized pseudo-monotone mapping with respect to Xn.  The con-

cept of a generalized pseudo-monotone mapping was originally introduced by

Browder [5] and by Browder-Hess [6] who proved results concerning surjec-

tivity of generalized pseudo-monotone mappings (see, e.g., [5, Theorem 7]

and [6, Theorem 5l).

Definition 2.  Let  T be a mapping from  X into  2       with effective do-

main D(T).  T is said to be quasi-bounded if for each M > 0 there exists a

constant  K (depending on M) such that whenever  [x, co] £ G(T), (co, x) <

M||*ll> ||*|| < M, then  ||co|| < K.  Note that a bounded mapping  T (which maps

bounded subsets of X into bounded subsets of X  ) is clearly a quasi-bound-

ed mapping, while the converse may not be true.

The following proposition shows that for bounded mappings of type (iM)

we have that  D(T) - X.

Proposition 1.   Let  X be a real reflexive Banach space and X0 a dense

X *
linear subspace of X.   Let  T: X —> 2        be a given mapping with effective

domain D(T) such that  X. C D(T). Let  T be a bounded mapping of type (M)

with respect to XQ.   Then  D(T) = X.

Proof.  Let  u £ X  and ia.S be a sequence in  Xn  such that a. —► a  in
7^0 ;

X.   Since  T is a bounded mapping, we see that  U^i   Tu . is a bounded sub-

set of X    and so, by passing to a subsequence (if necessary), we may take

co. £Tu. and an cu £ X     such that  co ■ —-co  (weakly) in  X  . Now clearly

lim ._xico ■, a . - u) = 0  so that  lim •_oc(cl» ., a .) = (co, u). It then follows from

(M3) that a £ D(T) and co £ Ta.   Hence X = D(T).

This proposition shows that the natural condition on a mapping of type

(M) whose effective domain is not all of  X  is that of quasi-boundedness rather

than boundedness.  We now state the main result of this paper.

Theorem 1.   Ler:  X be a reflexive (not necessarily separable) Banach
X*

space and X. a dense linear subspace of X.   Let A: X —► 2       be a maxi-

mal monotone mapping with effective domain D(A), 0 £ A(0) and the graph

G(A) of A  a weakly closed subset of X x X   .  Let  T: X —> 2        be a quasi-

bounded mapping with effective domain  D'T), X. C D(T), of type (M) with

respect to  X   .   Suppose further that the mapping   T  is coercive,  i.e.,
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V *

Yimal€Tu\\i\ociico,u)/\\u\\)= oo. Then the mapping A + T from X into  2

is surjective, i.e., RiA + T) = U   eD(A)nDiT,^a + ^u) = ^ •   Moreover, for

each  co £ X , the subset  \u £ X\ co £ Au + Tu\ is a weakly compact subset

of X.   iHere  Au + Tu denotes the vector sum of the subsets Au and Tu of X .)

Corollary (Brezis [3], Gupta [7], Kenmochi [9]).   Let  X be a reflexive
x*

Banach space, A: DiA) C X —» 2       a linear maximal monotone mapping and

T: X —» 2       a bounded, coercive mapping of type (M).  Then the range of A

+ T, R(A + T)= X , and for each co € X    the subset \u £ X\ co € Au + Tu\ is

a weakly compact subset of X x X .

Corollary 2 (Browder and Hess [6]).  Let X be a reflexive Banach space
v*

and X„  a dense linear subspace of X.   Let  T: X —> 2       be a quasi-bounded

mapping, with effective domain D(T), X. C DiT), of type (M) with respect to

X.. Suppose further that the mapping T is coercive, i.e., lim^-y.  .11   ti   ^ico, u)/\\u\\)

= 00.   Then R(T) = X*.

Proof of Corollary 2. Take A: X —• 2       to be the mapping defined by

Ax = {Ol for each  x £ X.   Then clearly  A  is a maximal monotone mapping

from X into X    with  0 £ A(0), and G(A) = X x {o! a weakly closed subset

of X x X .   The corollary is then an immediate consequence of Theorem  1.

Remark. We may remark that our Theorem 1 is similar to Theorem 1 of

Hess [8] where  T is a generalized pseudo-monotone mapping and A  is a

maximal monotone mapping with   [0, 0] £ G(A) and  0 is an interior point of

D(A), so that A  is (strongly) quasi-bounded.  Our theorem is, thus, an im-

provement  over Theorem 1 inasmuch as our conditions are more general both

on the mapping A  and the mapping  T.   This allows us to consider boundary

value problems in L  -spaces instead of Sobolev-spaces.

Proof of Theorem 1.  We first remark, as is standard by now for theorems

of this type, that it suffices to prove that  0 £ R(A + T). Using a result of

Asplund [l],we shall assume in the following that the Banach space X  is

endowed with a norm in which both X  and  X    are strictly-convex. Now, let

/  be the duality mapping from  X    into  X defined for a given  co £ X    by

Jco = u, where  ico, ]co)- ||w||2  and  ||/tu|| = \\co\\.  Such a u exists by Hahn-

Banach Theorem and is unique since  X is strictly-convex. Also, we have

ico   - a>2, ]a>. - JcoJ =0 for oij, a>2 € X    which implies that o)j = a>2  since

both  X  and X    are assumed to be strictly-convex.

Now, for e> 0 set A   = (A      + tj)~  . It is easy to see that A( is a

single-valued, everywhere defined, bounded maximal monotone demicontinu-

ous (i.e., continuous from   X to   X    endowed with weak topology) mapping

from  X into  X  . Now, let  A denote the family of finite dimensional sub-

spaces of X    and let A  be partially ordered by inclusion.  We may assume

that  XQ = UlF| F £ AS.  For  F £ A, let jp: F —• X denote the inclusion



146 C. P. GUPTA

mapping and jF: X   —>  F    the corresponding projection mapping.  Then the
•if.   , . p *

mapping B p   - jF(A   + T)jp: F —> 2       is such that  B F (u) is a nonempty

closed convex subset of  F    for each  a in  F, and  B F    is upper-semi continu-

ous from F to F  .  Also, since T is coercive and  (A u, a)> 0 for u £ X,

we see that there exists an r (independent of f and  F) such that (Bp u, u)

> 0 for u £ F and  ||a|| > r > 0. It then follows by Proposition 10 of Browder-

Hess [6], that for each  Y £ A and  e > 0 there exists  ap    £ F  such that

||«Ff|| < r and  0 £ BP(up(, or equivalently, there exist y p( £ (Af + T)u p
J- ^

such that y „    £ F     (the annihilator of  F  in  X  ). Now let cop   £ Tu p    be

such that v„, = A  a„ + cor,,.  Since  (A,a „   . a „,) > 0 for each  F £ A, we
■* r t (    r £ r t €    r t        r t     —

get that  (cop   , a„   ) < 0 for  F £ A.  It then follows from the quasi-bounded-

ness of  T that there exists  M  (independent of  F  and  e) such that  \\cop   || <

M for F £ A  and  f > 0.   Since A    is bounded, and   (yF,? w) —> 0 following

the filter A for each  v £ Xn, we see that yF   —' 0 (weakly) in  X    following

the filter A. Now, for each  F £ A, let  Vp( = \[up'£, cop'J\ F' £ A, F' D F\.

By our work above, we see that   VF    is contained in some closed ball  S in

X x X    which is weakly compact since X is reflexive. Note that the ball S

in  X  x X    does not depend either on  F or  e.  Let   VFi denote the weak-

closure of  V p    in   XxX    and let  c > 0 be fixed temporarily.  The family

\Vp \F    , of weakly closed subsets of the weakly compact set S in  XxX

clearly has the finite intersection property, and so we get  f lp€A Vpe ^ ^-

Now, let  [u(, g(] £ llp£AVpf. We assert that u(  £ DCT) so that  Tu( is

nonempty and g    £ Tu(.  For this, let  FQ be an arbitrary element of A.  We

apply Proposition  11 of Browder-Hess [6] to this  F. £ A  and the sets  Ve-

to obtain an increasing sequence  F.    in   A, such that  F .    DF. for each /,

and  [a.   , co.  ] £ V p (   such that  u^^u    (weakly) and co f —' g€   (weakly).

Let y ., = A,a ., + co ...  Since A,   is bounded and ico., !, {a.,| are bounded,
J Jt t    j€ Jt € Jtjt 7

we see that  iy .   \ is bounded.  Also, for each  v £ X. = closure \J.F.  , we

have (y .   , v) —' 0 as  ;' —> oo. Since a.    £ X.   for each  j, and a strongly

closed subspace of  X is also a weakly-closed subspace of  X, we see that

a    £ X.. Now, using the monotonicity of A     and the fact that  (y . , v) —> 0

for each  v £ X., we have from

0 < (A(u.€ - A£u(, u.e - u£) = (y.( - co.( - A(u(, u.( - u()

that lim sup(co.   , a.  ) < (g   , uj. This gives that u£ £ D(T) and gf £ Tu(

since  T is of type (M) with respect to  X  . Now   [a   , g  ] £ I \p( A Vpf   with

g    £ Ta    gives that there is an ultrafilter  A' of A, such that up   —' a   ,

cop    —« g    following  A .  Also we have that yF    —■ 0 following A    since

A' is an ultrafilter of  A.  Now, for  F £ A' we have up    £ A~   (yF£ — apJ

+ eJ^yFi ~~ aFe^' ^° tnere exist vp{ e A~  iyFe - ojpj such that up( -

vpe + (f(y p   - copj- Using the fact that  0 £ A(0) or, equivalently, 0 £

A~  (0), we get that
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(yFe - <uFe, uFJ > 4yFe - <oF(\\2-

Since  iyp   , up  ) = 0 for F e A' and  ||wpe || < M, ||"Ff || < r, we see that there

is a constant  C  independent of e and  F   such that  t ||yp, - Wp, ||    < C   .

This then gives that

\\uFi - vp\\\ = e\\ype - cop\\ < y/7 C.

So, by passing to another ultrafilter if necessary, we may assume that there

exist A, £ X, pr £ X    such that y ,-., — a>Cr —• p  , f,,, —» A, for F e A .

Since G(A~   ) is weakly-closed in X   x X, we see that   p    £ D(A~  ) and

h£  £ A~ 1(p(), or equivalently, h( £ D(A) and p£  £ Ah(.  Since yP( — 0 in

X    following A', and Cc>pf —' gf  following A , we see that -g( = p(. Now

using the weak-lower-semicontinuity  of the norm in X, we get that \\u   - A   ||

<\f(C for e > 0.  This shows that Af = u( - h( —• 0 (strongly) in  X  as  e

—» 0.   Let  {f   I be a sequence of positive real numbers such that  f    —» 0 as

n —> oo. We may assume that there exist u £ X and g £ X  , such that u
*n

—^ u  and g     —> g.  Now A      = a     - A     —' u  and AA     3 p     = -g     -^-g
en en en tn ln ln fn +

imply that  u  £ D(A) and — g £ Au  since  G(A) is weakly-closed in  X x X .

To complete the proof of the theorem, it will now suffice to prove that g e Tu

in order to conclude that  0 € Au + Tu.  Now, using the monotonicity of A  and

the fact that -g £ Au, we get from 0 < (p      + g, h      - u) = i-g      + g, u      -

A     - u) that  lim sup        (g    , u     ) < ig, u), which implies that u £ D(T) and
t n n t n       t n

g e Tu  since  T  is of type (M).

Now to see the weak-compactness of the subset \u £ X\ co £ Au + Tu\

for a given  co £ X  , it suffices to note that  \u £ X\ co £ Au + Tu\ is a bounded

subset of X since 0 e A(0) and T  is coercive.  It is then easy to see that the

set is weakly-closed under our assumptions if we observe that in a reflexive

Banach space the weak-closure of a set consists of limits of weakly-conver-

gent sequences in the set.

This completes the proof of Theorem 1.

Remark.  The analogue of Theorem 1 when  A  is a general maximal mono-

tone mapping still remains unproved. We may note that the condition that  0 £

A(Q) can be replaced by the condition that D(A) n XQ 4 0, and the coercive-

ness of T by the coerciveness of A + T.   We may also remark that, unlike

other results of the type of Theorem 1, we do not need to check that A + T is

a mapping of type (M).   (See, e.g., [5], [6], fe].)

The following theorem is given as an application of Theorem 1 to the prob=

lem of existence of solutions of nonlinear boundary value problems of Neumann

type in  L (fi).

Theorem 2.  Let 0  be a bounded domain in an Euclidean space  R"  with

smooth boundary  Y so that the Sobolev Embedding Theorem holds for fi.   Let

B be a maximal monotone graph in  R x R, such that there exists a convex
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lower-semicontinuous function j: R —> (— oc, oc], j / +oc with  f3 - dj, the sub-

differential of j.   Let  T: L  (fi!) —• L  (fl) be a quasi-bounded mapping of type

(M)   such that   DiT) D> C^(fi)   ithe space  of test functions  in   fi)   and

limn   ii   __0C((Ta, a)/||a||2) = °c.   T/;e72 for every f £ L  (fi) there exists a u £

L2(fi) such that

- Au + Tu = /    a.e. in fi,        -du/dn £ /3(a)    a.e.  in Y.

(Here A denotes the Laplacian and d/dn the outward normal.)

Proof. In view of Theorem 1, it suffices to check that the mapping A:

L2(fi) — L2(fi) defined by Aa = -A72  with effective domain  D(A) =

ia £ H  (fi)| -du/dn £ /3(a) a.e. in   Y\ is a maximal monotone mapping with

0  £A(0) and G(A) weakly-closed in  L2(fi)x L2(fi).  That A  is maximal

monotone follows from Theorem 12 of Brezis [4].  Moreover, we have that there

exist constants  CyC2  such that   ||"||H2(o) - c\ ll-^ + "II L2(rn + c2  ror a^

a £ D(A).  (Here  Hk(Q) denotes the usual Sobolev space.) Clearly  A(0) = 0.

To check that the graph  G(A) = i [a, -Aa]| u £ D(A)\ is weakly closed in

L  (fi) x L2(fi), let  ia .1 be a sequence in  D(A), and  a, g £ L2(fi) be such

that a. —a  (weakly) in   L2(fi), and Aa. = -Aa.^g  (weakly) in   L2(fi).  It

then follows that the sequence  ia.! is bounded in the Sobolev space  W2(fi),

and so by the Sobolev Imbedding Theorem a. —> 72  (strongly) in   L2(fi).  It is

then immediate from the maximal monotonicity of A  that a £ D(A) and g =

Aa.   Hence, the graph  G(A) of A   is weakly-closed in   L2(fi) x L2(fi).  The

theorem then follows immediately from Theorem 1.
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