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FLOW-INVARIANT DOMAINS OF HOLDER CONTINUITY

FOR NONLINEAR SEMIGROUPS1

ANDREW T. PLANT

ABSTRACT. Let S(t) be a nonlinear semigroup, on Banach space X,

generated by an accretive set A. The set of x in X such that t — S(t)x

is Holder continuous, with Holder exponent cr e (0, lj , is flow-invariant

and is characterised by the behaviour of the map   X — (/ + A/1)"*  x  at   A = 0.

0. Introduction.   Let  D be a subset of Banach space  X,  and  D its

closure.   Let  S(t) be a strongly continuous semigroup on  D. That is S: [0, oc)

x D —> D, S(t + s)x - Sit)Sis)x and Sit)x —»5(0)x = x as  t —» 0.   Suppose

further

(0.1) ||S(£)*-S(i)y||<e<~"||x-y||.

That is Se QJJD) [4].   For 0 < a < 1 define

(0.2) Da = fx e D: lim sup rcr\\x - Sit)x\\ < ci

then clearly  D     is flow-invariant, and for each x € D  , T < ocf there exists

K < - such that   \\Sit)x - Sis)x\\ < K\t - s|CT for 0<s,t<T.

It is the purpose of this paper to characterise  D    by the behaviour of

the infinitesimal generator of S.   The result, Theorem II, is quite natural and

extends some results of Crandall L3J where the generalized domain   D     is

considered.

1. Preliminaries.   Let  X be a Banach space, and  Ct(&>) denote the set

of subsets  A  of X x X  such that A + col is accretive.   Let  D = DiA) «=

\x: Ax 4 0\  and  /^  = (/ + XA)~  .   Accretive sets are defined in [41 where

the following generation theorem is proved.

Theorem I.    Let  A e (lico).   Suppose there exists  An > 0 such that

X co < 1  and

(1.1) R(/+AA)3D    /or0<A<A0,

then
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(1.2) S(t)x =   lim   /*   x
77-oc    t/n

exists for x e D,   and moreover S e Q JX>).

Let   (x, x*) denote the value of x* £ X* at x e X,  and  F(x) = ix* e X*;

(x, x*) = ||x||2 = ||x*||2S.    For x, y eX  define (x, y)+ = supiRe(x, y*):

y* £F(y)|.   Some properties of this function and the corresponding (x, y)     are

given in [4, Lemma 2.16] and [5, p. 74],   In particular for x, y e X and a e R

(1-3) |(x, y) + | < ||x||||y||,       <x + ay, y) + = <x, y)+ + a||y||2.

Our proof of Theorem II in the next section is based on the following

result.

Lemma 1.1.   Let A  and S(t) be as in Theorem I.    Let x eD  and

[xQ, yQ]eA  then

(1.4) ||x0 - Sit)x\\ 2 - ||x0 -x\\2<2JtQ(y0 + UxQ - S(r)x), xQ - S(r)x)+ dr.

The proof of (1.4) for the case co = 0 is given by L7, Equation (2.10)J.  The case

for general  to is easy to deduce from [5, Equation (3.8)],   Replacing x by

S(s)x gives

(1.5) Hit) = f (y0 + coix0 - S(r)x), xQ - S(r)x)+ dr - M||*0 - S(t)x\\2

is nondecreasing.

2.   Holder continuous domains.   We characterise  D     by defining the fol-

lowing two functions on  D.

\Sx\a = lim sup t~a\\x - S(t)x\\,        \Ax\a = lim sup A_cr||x- /xx||.
t —' 0 A—*0

Theorem II.   Suppose A  6 (lico) and (1.1) holds.    Let  S(t) be defined by

(1.2).   Then for 0 < o < 1,

(2.1) (1/3)|S*U<|Ax|ct<3|Sx|ct,

(2.2) Da = ix e D: \Sx\a <*>\= \x e D: \Ax\a < o.}.

Proof.   Clearly (2.2) is a consequence of (2.1).   To avoid considering

separate cases we may assume in full generality that  oj > 0.   Let  A > 0 and

Xco < 1,  and in (1.5) set xQ = ]xx, yQ = A-1(x - xQ).   If z{) = ||x0 - s(r)x]|

and f{) = \-l[\\x - S(r)x\\ - (l - Xco)z(r)] then by (1.3)

A(yQ + 6j(x0 - S(r)x), xQ - S(r)x) +

= (x - S(r)x - (l - Atu)(x0 - S(t)x), xq - S(r)x} +

= (x - S(r)x, xQ - S(r)x)+ - (l - Xco)z(r)2 < Xf(r)z(r).
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Therefore  f'Q /(r)z(r) dr-Y2zit)    is nondecreasing.   Consequently, if

zit) 4 0, 0 < fit) - Dzit), where  D represents any of the four Dini derivates.

However, if D~zit) (resp. D_z(t)) represents the upper (resp. lower) left-hand

derivate of z at  t > 0,  then  zit) = 0 implies  D_z(i) < D~zit) < 0 < fit).   Con-

sequently for all  t>0,0<f(t)-D_z(t)=D~[ft0f(r)dT-z(t)];  and so by a

classical result, e.g. [8, p. 84], the bracketed term is nondecreasing.   In parti-

cular zit) - ziO) < Xo Ar)dr-

Now set x(t) = ||x - S(t)x\\, y(X) = \\x - J x x\\ = ||x - xQ\\ = z(0).   Then

\x(t) - y(X)\ < zit) and consequently

(2.3) \xit) - yiX)\ - yiX) < A" 1 f' xir) - (l - Xoj)\xir) - yiX)\ dr.
j o

The modulus signs may be removed to give four inequalities of which one

is trivial.   We use two of the remaining three.   First

xit) - 2y(A) < X~ x J' Xcoxir) + (l - Aoj)yUVr

which, after integrating the constant term and applying Gronwall's lemma [6,

p. 283], gives

(2.4) xit) < [2 + (1 + A^Xexpta/) - l)/Atu]y(A).

Now set  A = t, divide by  t    and let    t —» 0 to obtain the first inequality

in (2.1).   Returning to (2.3),

-x(t) <X~l ^(2- Aw)x(r) - (1 - Xco)y(X) dr

which rearranges to

(2.5) (1 - Xcj)y(X) < (X/t)xit) + (2 - Xoj)t~l j1 xir) dr.

For the second inequality in (2.1) we may assume \Sx\ < oc, so Lit)—

supir-°x(r): 0<r<f! -» |Sx|a as j ^ 0 and f0 xir) dr < il + o)-1 LiDt1*".

Then setting A = t in (2.5) gives

(1 - tco)yit) < xit) + (2 - tco)il + a)~ lLit)ta

and the required inequality follows.   This completes the proof.

From (2.4) and (2.5) we easily deduce global estimates:

Corollary.   // pit) = iel - l)/t  it > 0), pit) = 1  it < 0), co+ = max|a, 0j and

Ata < 1  then

(2.6) ||x - Sit)x\\ < [2 + (1 + Xcof)piojt)t/X]\\x - ]xx\\,

(2.7) (l-A<u+)||x-/Ax|| <(AA)||*-S(t)x|| + i2 - Xco^r1 f'jx - Sir)x\\ dr.

In particular if co = 0

(2.8) - \\x - S(t)x\\ < \\x - ]tx\\ < \\x - Sit)x\\ + 1 fc \\x - Sir)x\\ dr.
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Remark 1. The first inequality in (2.8) was announced by D. Brezis [2]

for the case X is a Hilbert space. The general case has the following sim-

ple proof, for which we thank the referee:

||x - S(t)x\\ < ||x - ]tx\\ + \\jtx - S(t)]tx\\ + \\S(t)fx - Sit)x\\

<2\\x-fx\\ + \\fx-Sit)fx\\,

but

\\ltx-S(t)]tx\\<t\\Atx\\ = \\x-Jx\\.

The second inequality in (2.8) should be compared with   ||x - / x|| <

3||x - S(r)x||   obtained by Brezis for the case   X is a Hilbert space and  A  is

a gradient.   In the general case periodic orbits are possible, and the Brezis

estimate fails.   For example consider the rotation group in R  .

Finally, if  X is a Hilbert space, one deduces from Theorem 4 of [2]

with p - oc that

-Wsup    t~a\\x- ]x\\\/( sup    t-aflX-S(t)x^\<6.

3        \0<7<1 //  \0<t<l j

(2.8) gives the same result with 6 replaced by  (3 + o)/(l + a) < 3.

Remark 2.   Our method can easily be used to improve estimates (2.1).

In (2.4), (2.5) set  A= at,  take the limit as before and then minimize with

respect to   a> 0.   This gives

(2.9) y(o)\Sx\a < \Ax\a< L(l + a)1" ayi.a)Y l\Sx\a

where  y(a) = o^iViil - a)) (a < l), y(l) = 1, which is best possible at   ff =

1  (i.e.   |5x|. = |AxL) (proved by Crandall [3J).   In the next section we give

an example where |^l^j      < |5x|} ,2>

Remark 3.   The results in this section have wider applicability than we

have so far indicated.   Condition (1.5) expresses the fact that S(t)x is, in

the terminology of Ph. Benilan [l], a solution integrate of  (du/dt) + Au 3 0.

Consequently our results apply to such solutions, provided  x 6 R(l + AA).

3.   An example.   We consider an example of Webb [9J.   Let X be the

Banach space of bounded uniformly continuous real-valued functions on

[0, oc) with supremum norm.   Let  Af = - /', D = D(A) = \f: /' £ X}.    Then A

is closed, linear, densely defined and 777-accretive.   The corresponding semi-

group is translations,   (S(t)f)(s) = f(s + t),  so  Da is the subspace of uniform-

ly Holder continuous functions with Holder exponent   o.   Moreover

(]xf)(t) = A"1 J" f(s) exp[(r - s)/X]ds.

Now set /(/)= (l-t)l/2 (t < 1), /(r)= 0((> l).   So  \Sf\1/2 = 1, and it is

an easy computation to show



FLOW-INVARIANT DOMAINS OF HOLDER CONTINUITY 87

A" U2(fit) - i]J)it)) = j*oy exp(x2 - y2)dx       it< 1)

= 0       it > 1)

where y = (1 - t)1/2X~l/2.   Therefore

A-1/2|t/-/A/ll = sup  f'expix2-y2)dx
y   J

where  sup is taken over the range   0 < y < A"     .   Thus

lA/l1/2=suP  (T exp(x2 - y2)dx.
0<y J

But

jyQ exp(x2 - y2)^x < e^ f* ex^ dx = (l - e^Vy < (2/e)1/2.

Therefore

l^/l1/2<(2A)1/2<l = |5/|1/2.
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