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ON THE CENTER OF SOME FINITE LINEAR GROUPS

HARVEY I. BLAU

ABSTRACT.   This note proves two results, one in characteristic p

and the other in characteristic zero, which restrict the order of the center

of some finite linear groups of degree less than a prime p  which divides

the group order.

G denotes a finite group, p a fixed odd prime, P a Sylow  p-subgroup

of  G.   Z is the center of  G and  z = \Z\.

Theorem 1.   Assume G = G ,   G is not of type LAp), P is cyclic, and

for some field K of characteristic p, there is a faithful, indecomposable

KG-module  L of dimension d < p.   If rf is odd then  rf> (z/(z + 2))p.   If d

is even then

d > (z/(z + 2))(p + 1)        (z odd)

> (z/(z + 4))(p + 1)        (z  even).

Theorem 2.   Assume  G = G , P has order p and is not normal in  G,

the number t of conjugate classes of p-elements of G is at least  3, and G

has a faithful irreducible complex character y of degree rf < p - 1.   Let

e = (p - l)/t.   Then z < 2d/(e + l).

Remarks,   (i) Theorem 1 supplements [l, Theorem 5.11].  While the

fractional multiples of p given in  [l, Theorem 5.1l]  are a little better than

in Theorem 1, an annoying  (especially for large values of z) remainder term

in the earlier result is dispensed with here.  One consequence is the fol-

lowing:   It is known that  z\d under the hypotheses of Theorem 1.   As a cor-

ollary of the theorem, we have that if z = rf, then  rf > p — 3.

(ii)   Theorem 2 is proved by exploiting the methods of [2], which were

themselves a variation on those of [8].   The numerical case  p = 31,   rf =

z = 28, e = 3 listed in [1, §8], and not ruled out by previous results, is

eliminated by Theorem 2.  For in that case the modular representation in-

volved in  [l]  lifts to an ordinary representation to which Theorem 2 can be

applied.
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(iii)   Apparently, no groups are known which satisfy either the hypotheses

of Theorem 1 with p > 13 and d < p - 2, or the hypotheses of Theorem 2

with p > 1 and d < p - 2.  If such groups do exist, their p-local structure is

quite restricted, as our results indicate.

Proof of Theorem 1.   Since Lp is indecomposable  [7], and remains in-

decomposable under all field extensions  (as  P  is cyclic), we may assume

K is a splitting field for all subgroups of  G.   Let d = p - s.   By  Ll, (5.3)],

the nonprojective summands of L ® L  are  L .,  0 < ;' < s - 1, of dimensions

2z + 1 + m.p, with  2S_~   to. < p - 2s.   Now z\d [l, Proposition 5.1]  and by

Ll, (5.10)],'

(1) z|2(2i'+ 1 + m.p),       0 <i <s- 1.

For any integer i with 0 < i < (s - l)/2,  let i' = s - 1 - i.   Then (1)

implies

(2) z\2(2s + (m.+ m.,)p),       0 < i < (s - l)/2.

Suppose  d is odd.   Then  z  is odd, and (2) yields

(m . + m.,)p = -2s    (mod z),        0 < i < s/2 - 1.

Since p = s  (mod z), and  (s, z) = 1, we have

m. + m., = - 2    (mod z),        0 < i < s/2 - 1.

Thus m . + m ., > z - 2,  0 < i < s/2 - 1, so that

s-1 s/2-l

p - 2s > £ m. >     £    (m. + m.,) > (s/2)(z - 2).

i=0 z=0

It follows that  s < (2/(z + 2))p, whence  d > (z/(z + 2))p.

Suppose  d is even.   If z  is odd, again we have

m. + m., = -2    (mod z),        0 < i < (s - l)/2.

Also, z\ 2(s + pm.      ,....)  implies  m.  _j.,2 = —1  (mod z).   Thus

(s-3)/2

p-2s>m.     ,,.,+       V     U.+ w.,)>z- l + (z- 2)(s- l)/2.
r —     (s - 1)/ 2 ^^ j ;     —

z=0

It follows that s < (2/(z + 2))p - z/(z + 2), hence

(3) d > (z/(z + 2))p + z/(z + 2) = (z/(z + 2))(p + 1).

If z  is even,   (2) implies the above congruences are still valid modulo

z/2.  So we may replace  z  by  z/2 in (3) to obtain  d > (z/(z + 4))(p + l).
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Proof of Theorem 2.   Assume the hypotheses of Theorem 2.   Then  rf =

p - e [5].   If p = 7, no such groups exist [6], so we may assume  p > 7.

Feit's reduction argument [8, (6.1)]  shows that  G  is not of type  L2(p).

Then by  [8, (2.1)],   G  satisfies conditions  (*)  of  [8], and  z\d.   If  e = 1

then rf= p - 1, a contradiction.  If e = 2 then G % SL2(2a) and z = 1 [9].

So we may assume  2 < e < (p - l)/2. Also, [8, Theorem l] implies z is

even, hence e is odd.

Let F be a p-adic number field with ring of integers  R such that  F

and  R/J(R) = K are splitting fields for all subgroups of  G.   Let  M  be an

R-free  RG-module such that  M ®R F affords   y and  L = M/J(R)M is inde-

composable  [lO].   P <fi G  implies L is faithful, so the situation of Theorem 1

holds with s = e.

Let N be the normalizer of  P in G, and let  LN = V       (A) (cf. [l, §5]),

where  A is a linear character:   N —> K.  Let  L . be as above,  0 < i < e - 1.
1 '      —    —

L. has Green correspondent  ^.^(A ae + l) [l, §5].  Let xz = X^V'  V a

faithful linear character:  Z —> F.  Now  r/(Z) C /?, and if rj denotes  77 com-

posed with the canonical homomorphism:   R —> K, then  rj = \?.   There is a

one-one correspondence between the  p-blocks of positive defect and the dis-

tinct powers of  r\:  an irreducible character  (  of  C is in block  B     if and

only if  <CZ = C(l>?" [4].  Thus X> L are in B,  and the L. are all in B2 [l, §4].

Let  £.,   1 < j < t, be the exceptional characters in  B      Then  £.    =
7 7Z

£.(1)77  •   By  L8, (4.1)],   £.(1) = mp + e tor some positive integer  772, indepen-

dent of j.

We may assume   F  is sufficiently large so that for each   i with  0 < i <

(e - l)/2, there is an   #-free   RG-module  X. such that  X./](R)X. % L .  ©

Ig_i_x  \-3, Lemma 2.1].   Also, there is an  R-free  RG-module   Y such that

Y/J(R)Y % L,   _ jwj-  Now the  £,. occur in the character afforded by each

X. with total multiplicity at least  2, and in the character afforded by   Y with

multiplicity at least   1  [3, Lemma 2.2].   Hence

(0-3)/2      \

y®      Z     X) > 2£1U)(e - 0/2 + ^(1) = e^(l).

Therefore  (p - e)2 > e(mp + e).  It follows that  m <(p - 2e)/e = t - 2 + 1/e,

whence m < t - 2.

Since   C    = C-i^V  , we set the determinant of the appropriate scalar

matrices equal to  1 (as  G = G') to see that r)2^mt' + e) = T    Since 77 is faith-

ful on the cyclic group  Z, it follows that  z\ 2(mp + e), hence  mp + e = 0

(mod z/2).  Now z\p - e implies   me + e = 0 (mod z/2)  and  (2, c) = 1  yields

rn + 1 = 0 (mod z/2).   Therefore  t - 2>m> z/2 - 1.   Hence  z < 2t - 2 =

2(rf- l)/e < 2rf/e.   Since  z|rf, we have  z < 2rf/(e + L).
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