ON THE CENTER OF SOME FINITE LINEAR GROUPS

HARVEY I. BLAU

Abstract

This note proves two results, one in characteristic p and the other in characteristic zero, which restrict the order of the center of some finite linear groups of degree less than a prime p which divides the group order.

G denotes a finite group, p a fixed odd prime, P a Sylow p-subgroup of $G . Z$ is the center of G and $z=|Z|$.

Theorem 1. Assume $G=G^{\prime}, G$ is not of type $L_{2}(p), P$ is cyclic, and for some field K of characteristic p, there is a faithful, indecomposable $K G$-module L of dimension $d<p$. If d is odd then $d \geq(z /(z+2)) p$. If d is even then

$$
\begin{aligned}
d & \geq(z /(z+2))(p+1) & & (z \text { odd }) \\
& \geq(z /(z+4))(p+1) & & (z \text { even }) .
\end{aligned}
$$

Theorem 2. Assume $G=G^{\prime}, P$ has order p and is not normal in G, the number t of conjugate classes of p-elements of G is at least 3 , and G has a faithful irreducible complex character χ of degree $d<p-1$. Let $e=(p-1) / t$. Then $z \leq 2 d /(e+1)$.

Remarks. (i) Theorem 1 supplements [1, Theorem 5.11]. While the fractional multiples of p given in [1, Theorem 5.11] are a little better than in Theorem 1, an annoying (especially for large values of z) remainder term in the earlier result is dispensed with here. One consequence is the following: It is known that $z \mid d$ under the hypotheses of Theorem 1. As a corollary of the theorem, we have that if $z=d$, then $d \geq p-3$.
(ii) Theorem 2 is proved by exploiting the methods of [2], which were themselves a variation on those of [8]. The numerical case $p=31, d=$ $z=28, e=3$ listed in [1, §8], and not ruled out by previous results, is eliminated by Theorem 2. For in that case the modular representation involved in [1] lifts to an ordinary representation to which Theorem 2 can be applied.

Received by the editors September 3, 1974.
AMS (MOS) subject classifications (1970). Primary 20C15, 20C20; Secondary 20C05, 20D05.

Key words and phrases. Indecomposable modular representation, faithful irreducible complex representation, small degree, prime order Sylow subgroup, conjugate class of p-elements.
(iii) Apparently, no groups are known which satisfy either the hypotheses of Theorem 1 with $p \geq 13$ and $d<p-2$, or the hypotheses of Theorem 2 with $p>7$ and $d<p-2$. If such groups do exist, the ir p-local structure is quite restricted, as our results indicate.

Proof of Theorem l. Since L_{P} is indecomposable [7], and remains indecomposable under all field extensions (as P is cyclic), we may assume K is a splitting field for all subgroups of G. Let $d=p-s$. By [1, (5.3)], the nonprojective summands of $L \otimes L$ are $L_{i}, 0 \leq i \leq s-1$, of dimensions $2 i+1+m_{i} p$, with $\sum_{i=0}^{s-1} m_{i} \leq p-2 s$. Now $z \mid d[1$, Proposition 5.1] and by [1, (5.10)],

$$
\begin{equation*}
z \mid 2\left(2 i+1+m_{i} p\right), \quad 0 \leq i \leq s-1 . \tag{1}
\end{equation*}
$$

For any integer i with $0 \leq i<(s-1) / 2$, let $i^{\prime}=s-1-i$. Then (1) implies

$$
\begin{equation*}
z \mid 2\left(2 s+\left(m_{i}+m_{i^{\prime}}\right) p\right), \quad 0 \leq i<(s-1) / 2 . \tag{2}
\end{equation*}
$$

Suppose d is odd. Then z is odd, and (2) yields

$$
\left(m_{i}+m_{i^{\prime}}\right) p \equiv-2 s \quad(\bmod z), \quad 0 \leq i \leq s / 2-1 .
$$

Since $p \equiv s(\bmod z)$, and $(s, z)=1$, we have

$$
m_{i}+m_{i^{\prime}} \equiv-2 \quad(\operatorname{inod} z), \quad 0 \leq i \leq s / 2-1 .
$$

Thus $m_{i}+m_{i^{\prime}} \geq z-2,0 \leq i \leq s / 2-1$, so that

$$
p-2 s \geq \sum_{i=0}^{s-1} m_{i} \geq \sum_{i=0}^{s / 2-1}\left(m_{i}+m_{i^{\prime}}\right) \geq(s / 2)(z-2)
$$

It follows that $s \leq(2 /(z+2)) p$, whence $d \geq(z /(z+2)) p$.
Suppose d is even. If z is odd, again we have

$$
m_{i}+m_{i^{\prime}} \equiv-2 \quad(\bmod z), \quad 0 \leq i<(s-1) / 2 .
$$

Also, $z \mid 2\left(s+m_{(s-1) / 2)}\right)$ implies $m_{(s-1) / 2} \equiv-1(\bmod z)$. Thus

$$
p-2 s \geq m_{(s-1) / 2}+\sum_{i=0}^{(s-3) / 2}\left(m_{i}+m_{i^{\prime}}\right) \geq z-1+(z-2)(s-1) / 2 .
$$

It follows that $s \leq(2 /(z+2)) p-z /(z+2)$, hence

$$
\begin{equation*}
d \geq(z /(z+2)) p+z /(z+2)=(z /(z+2))(p+1) \tag{3}
\end{equation*}
$$

If z is even, (2) implies the above congruences are still valid modulo $z / 2$. So we may replace z by $z / 2$ in (3) to obtain $d \geq(z /(z+4))(p+1)$.

Proof of Theorem 2. Assume the hypotheses of Theorem 2. Then $d=$ $p-e$ [5]. If $p=7$, no such groups exist [6], so we may assume $p>7$. Feit's reduction argument $[8,(6.1)]$ shows that G is not of type $L_{2}(p)$. Then by $[8,(2.1)], G$ satisfies conditions ($*$) of [8], and $z \mid d$. If $e=1$ then $d=p-1$, a contradiction. If $e=2$ then $G \approx \mathrm{SL}_{2}\left(2^{a}\right)$ and $z=1$ [9]. So we may assume $2<e<(p-1) / 2$. Also, [8 , Theorem 1] implies z is even, hence e is odd.

Let F be a p-adic number field with ring of integers R such that F and $R / J(R)=K$ are splitting fields for all subgroups of G. Let M be an R-free $R G$-module such that $M \otimes_{R} F$ affords X and $L=M / J(R) M$ is indecomposable [10]. $P \nless G$ implies L is faithful, so the situation of Theorem 1 holds with $s=e$.

Let N be the normalizer of P in G, and let $L_{N}=V_{p-e}(\lambda)(c f .[1, \S 5])$, where λ is a linear character: $N \rightarrow K$. Let L_{i} be as above, $0 \leq i \leq e-1$. L_{i} has Green corre spondent $V_{2 i+1}\left(\lambda^{2} \alpha^{e+i}\right)[1, \S 5]$. Let $\chi_{Z}=\chi(1) \eta, \eta$ a faithful linear character: $Z \rightarrow F$. Now $\eta(Z) \subseteq R$, and if $\bar{\eta}$ denotes η composed with the canonical homomorphism: $R \rightarrow K$, then $\bar{\eta}=\lambda_{Z}$. There is a one-one correspondence between the p-blocks of positive defect and the distinct powers of η : an irreducible character ζ of G is in block B_{n} if and only if $\zeta_{Z}=\zeta(1) \eta^{n}$ [4]. Thus χ, L are in B_{1} and the L_{i} are all in $B_{2}[1, \S 4]$.

Let $\zeta_{j}, 1 \leq j \leq t$, be the exceptional characters in B_{2}. Then $\zeta_{j_{Z}}=$ $\zeta_{j}(1) \eta^{2}$. By $[8,(4.1)], \zeta_{j}(1)=m p+e$ for some positive integer m, independent of j.

We may assume F is sufficiently large so that for each i with $0 \leq i<$ $(e-1) / 2$, there is an R-free $R G$-module X_{i} such that $X_{i} / J(R) X_{i} \approx L_{i} \oplus$ L_{e-i-1} [3, Lemma 2.1]. Also, there is an R-free $R G$-module Y such that $Y / J(R) Y \approx L_{(e-1) / 2}$. Now the ζ_{j} occur in the character afforded by each X_{i} with total multiplicity at least 2 , and in the character afforded by Y with multiplicity at least 1 [3, Lemma 2.2]. Hence

$$
\operatorname{dim}_{K} L \otimes L \geq \operatorname{rank}_{R}\left(Y \oplus \sum_{i=0}^{(e-3) / 2} X_{i}\right) \geq 2 \zeta_{1}(1)(e-1) / 2+\zeta_{1}(1)=e \zeta_{1}(1)
$$

Therefore $(p-e)^{2} \geq e(m p+e)$. It follows that $m \leq(p-2 e) / e=t-2+1 / e$, whence $m \leq t-2$.

Since $\zeta_{j_{Z}}=\zeta_{j}(1) \eta^{2}$, we set the determinant of the appropriate scalar matrices equal to 1 (as $G=G^{\prime}$) to see that $\eta^{2(m p+e)}=1$. Since η is faithful on the cyclic group Z, it follows that $z \mid 2(m p+e)$, hence $m p+e \equiv 0$ $(\bmod z / 2)$. Now $z \mid p-e$ implies $m e+e \equiv 0(\bmod z / 2)$ and $(z, e)=1$ yields $m+1 \equiv 0(\bmod z / 2)$. Therefore $t-2 \geq m \geq z / 2-1$. Hence $z \leq 2 t-2=$ $2(d-1) / e<2 d / e$. Since $z \mid d$, we have $z \leq 2 d /(e+1)$.

REFERENCES

1. II. I. Blau, Under the degree of some finite linear groups, Trans. Amer. Math. Soc. 155 (1971), 95-113; errata, ibid. 162 (1971), 475. MR 43 \#367; 44 \#329.
2. -_, An in equality for complex linear groups of small degree, Proc. Amer. Math. Soc. 28 (1971), 405-408. MR 43 \#364.
3. -_, Finite groups where two small degrees are not too small, J. Algebra 28 (1974), 541-555.
4. R. Brauer, On groups whose order contains a prime number to the first power. I, Amer. J. Math. 64 (1942), 401-420. MR 4, 1.
5. -_, Some results on finite groups whose order contains a prime to the first power, Nagoya Math. J. 27 (1966), 381-399. MR 33 \#7402.
6. _- Über endliche lineare Gruppen von Primzahlgrad, Math. Ann. 169 (1967), 73-96. MR 34 \#5913.
7. W. Feit, Groups with a cyclic Sylow subgroup, Nagoya Math. J. 27 (1966), 571-584. MR 33 \#7404.
8. -, On finite linear groups, J. Algebra 5 (1967), 378-400. MR 34 \#7632.
9. -, On finite linear groups. II, J. Algebra 30 (1974), 496-506.
10. J. G. Thompson, Vertices and sources, J. Algebra 6 (1967), 1-6. MR 34 \#7677.

DEPARTMENT OF MATHEMATICS, NORTHERN ILLINOIS UNIVERSITY, DE K ALB, ILLINOIS 60115

