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ON ASYMPTOTIC BEHAVIORS OF ANALYTIC MAPPINGS

ON THE MARTIN BOUNDARY

MIKIO NIIMURA

ABSTRACT.   Some generalizations of the analogue of Collingwood and

Cartwright  in the large of Iversen's theorem are given.

Let / be a nonconstant analytic mapping of a hyperbolic Riemann sur-

face  R  into a Riemann surface  R .   Let  R* and  R *  denote the Martin com-

pactification and any compactification of R  and   R , respectively.   A  and

A    denote the Martin ideal boundary of  R  and the ideal boundary of  R  , re-

spectively.   A,   Ac  and  intA  mean the closure, the complement and the in-

terior of a set A (CR* or R'*) with respect to R* or R'*, respectively.

Let dA  denote the relative boundary of A  (CR  or fi )  with respect to  R  or

R' and /_ the restriction of / to G (CR).

Let \G      \ be a determinant sequence of Kerekjarto-Stoilow's ideal

boundary point  e,  and set  A    = ||   G       and  A   (e) = G       n A.   The cluster
Cr n

set of / for  Ae  is defined by  C(f, Ap) = fl„/(G^'),  and the range of / for

Ae by R(f, Ae) = DjiG^).
In this paper we assume that the harmonic measure of A     is positive.

For fe £ Aj,  let  Fb be a filter basis on R with respect to the fine

topology, and set /  (b) = Hy f p   f(ll).   Here  Aj  denotes the set of minimal

points in  A.   It f   (b) consists of a single point, then fib) is denoted by fib).

We say that a curve  p = \(t) (0 < t < l)  on  R   converges to  e,  when for

every  tz,  there exists  t(n)  such that A(/) C Cre' tor all  t > /(«).   (lt>0 X(t)

denotes the end of this path:  p = X(t) (0 < t < l).   Let Y(f, A   /,»))  denote
Gn

the set of asymptotic points along all the paths such that the end of each

path is on Ac(e)>  and set  y(f, Ag) = D^Xf. AG(e)) and   y*(f. AJ =

f|  T(/. A   ,e)f.   It for any neighborhood   V of  a £ R1*, Vn Y(f, A   ,e))  is a
71 Gn Gn

nonpolar set, we say  a £ r,(/, A   (e))  and set  yj.f, A ) = || Y +if, A   ie-f).
Gn e " Gn

Lemma 1.   // a £ yj,f, Ap)c n C(f, Ag) n R',  then a £ int /?(/, AJ.

Proof.   Since  a £ y£f, Ae)c n R',  there exist a parametric disk  V

about  a and  Gj^     such that   V Pi r(/, A   ie))  is a polar set.   Let w = ifj(q)
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iq e V)  be a local parameter of  V,  and we set  (/>(V) = \w; \w\ < lj (i//(a) = 0),

Wr={w; \w\ <r,0<r<l\, Cr = dWr and  <p°/   ,e) = g.

Since  If,  n r(g, A   te))   is a polar set, its linear measure is zero.

Hence  Yig, A   ie)) O Cf = 0   for almost all  r in 0 < r < 1.   Let  C    have this

property and fix  r.

Since  a € C(f, A ),  we see that g~ liW ) C\ G{e) 4 0  for all  n > N.

If there exists  G e {G^S such that  G C G^e) and giO C Wr,  then for

each point  b of a set  f/    (CA. n A ) whose harmonic measure is positive,

g(~ib) e W .   Indeed the harmonic measure of A     is positive and gc  is a

Fatou mapping of G  into  W .

Hence there exists an asymptotic path y from a point of  G to each point

b  of Hg  such that  Mm     b gcip) = gGib).   On the other hand, since  W^fl

Yig, AG)  OgGib),  for  b e H )  is a polar set, the harmonic measure of H

is zero.   This is a contradiction.   Thus for all  ra > AJ,   we conclude that  G^e'

n dg~Hwr) 40.

It dg~ iW)   contains closed Jordan curves accumulating to  e, then we

see easily that  w e Rig, A )  for any point  w on  C .

If for all n > N, G^e) has at least one noncompact y    of dg~  iW ),   let

z = cpip)  be a local parameter about p e G[?\  and set  h = g ° <p~   .   A func-

tion element  Qiw)  of z = h~  iw)  can be continued analytically along  C    in-

finitely often.   Indeed if not, when w tends to a point w,  (e C )  along C ,

y    is a path whose end is on  A   (e),  and so w,  e Yig, A   (<=))•   This is a

contradiction.

Therefore any point  w  on  C    corresponds to an infinite number of points

on y    for any  ra,  and hence  w e Rig, A ).

Therefore since for any point p of W      any neighborhood iCW.)  of p

contains points of  Rig, A ),  we get  Wj C R(g, A )  and  a e int Rif, A ),  as

claimed.

Corollary 1.   // Cif, A )   is nowhere dense, then Cif, A ) n R' C yf/, A ).

Proof. If  a e mtRif, A  ),  for a neighborhood   V of  a,  any neighborhood

(C V7)  of any point  B e V contains at least one point of  Rif, Ag)  and  Cif, A )

is not nowhere dense.   Thus we have  Cif, A ) n /?' C y^ (/, A ).

Lemma 2.   // a e x*(/» Ae)c n X<A Ae'C n °(A Ae) <~> #' ■ «Ae« a e ^(/. A,).

Proof.   Suppose that  a d Rif, A ).

Since   a e x*(A A^)^ n y(f A,JC n R1, there exist a parametric disk

U  about  a  and  G~f' such that   U D Yif, A   £ey)  is a polar set and  a 4

r(AAcj;f)).
All the a-points of /   ie) are contained in a finite  set of parametric
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disks \Uk\ (* = 1, 2.L)  such that  U. n U. = 0 (i 4 /)■   Let  V be a

parametric disk about  a  satisfying   V C (f\=1 fC[eil-,J) n  (7.   We fix  r

such that Y(g, A   te))  n Cr = 0.   There exists a diameter a^ of  Wr such

that T(/, A   iei) n d  =0.   There exists a diameter d   of W    such that
G/V r

H/. AG  (e)) n rf = 0.

Since  fo £ R(/, A )  for  b £ C ,   there exists a connected component D

of g"  (W )  which is not relatively compact.   Choose a point  p on dD which

is mapped by g  to an endpoint of d .   The function element  Q(w) correspond-

ing to p can be continued analytically along  d   through the point 0  to the

antipodal point and  d   is mapped on a cross-cut of D.   But on the other hand,

since  D  does not contain the zeros of g,  we have a contradiction, and we

conclude that a £ R(f, A J.

Theorem 1.   If R *  is a metrizable and resolutive compactification of

R'  and, for at least one n,  Y(f, A   (e))   is a polar set, then R(f, A )c  Pi R' C
G72 e

xU, \).

Proof.    From Lemma 2, we have  R(f, Ae)c n R' C y^(f, AJ  ij y(f, A J

U C(f, AeY.
If C(f, A )c 4 0,  there exist a parametric disk  V and  G £ iG(e'l (G C

#    v — n        —

G^   )  such that f(G) n V = 0.   Since the mapping fG  of  G  into  R' - V is a

Fatou mapping, it contradicts that the harmonic measure of  H    is positive,

as we see from the proof of Lemma 1.

Thus from  r+(/, A   [>)) =0,  we have  R(f, A )c  n R' C x(/, A ).
G„ e e

Lemma 3.   // a e x*(/„ Ae)c n C(f, AJ n R', rAew a  e int R(f, AJ.

Proof.   In Lemma 1,  take "all  r in 0 < r < I"  instead of  "almost all  r

in  0 < r < 1"  and consider  "Wl n Y(g, A   ,e)) =0"   instead of  "W1 n

T(g, A   7e))  is a polar set", then we have  w £ R(g, A )  for all  w: 0 < \w\ < 1

as in the proof of Lemma 1.

If wQ £ Wr/2 (wQ 4 0), we have wQ e C(g, AJ and W'r/2 n Hg, A,e))

= 0 (Wr'/2 = \w; \w - wQ\ < r/2\),  and henCe  0 £ R(g, AJ.

Thus we have  W1 C R(g, A^) and a £ int R(f, A ).

Theorem 2.   £(/, Ae)c n C(/, Ag) n R' C x*(/. A J.

Proof.   From Lemma 3, we have

y*(f, AJC C C(f,  \)c u R'c u (int «(/, AJ);

that is,
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Rif, \)c n Cif, A J n R'C x*if, A J.

Lemma 4.   int C(/, A J C R(/, Ag).

Proof.   Ii a £ int C(/, A ),  for any neighborhood   U of  a,  there exists

a parametric disk  VQ  about  aQ  satisfying  V„ C (/ n C(/, Ap).   Since  aQ e

Cif, A J,  there exists px £ Gj '  such that  a.j = /(pj) e VQ.   We can take a

parametric disk  V.   about  ttj   satisfying   V^ C VQ n /(Gj 0-   Repeating the

same method, we have a sequence of parametric disks  W   I (ra = 1, 2, 3,. . .)

such that  V   ,, C V     and  V    C /(G(e)).   ft e D   V     is assumed by / in any
n+1 n_n_    '       n ~ n     n J   ' '

G(e),  and hence  a e Rif. A ).

Corollary 2.   Rif, AJC n R' C X*if, AJ  if and only if Rif, A J = P.'*.

Proof.   If  Cif, Ae) 4 R'*,  there exists   aQ  such that  aQ £ Cif, AJC n

R' C R(f, Ae)c n R'.    If  a £ x*if. AJ,  then we have  a e Yif, A   (e))  for any
_ "n

ra  and  0 e T(g, A   (e))  for a parametric disk   V  about  a.   Since there exists

w    elf,,    n r(g, A   re\),  there exists   fi    e G(e' such that  p(fi  ) e W, ,  .
n 1/n °        rvv   ' r« n ° rn 1/n

w n

Since  p     converges to  e and gip )  converges to 0,  we see that 0 £ Cig, A )

and  a e C(/, Ag).   Hence we have  y*if, AJ C Cif. A J and aQ ^ y*(/, A&).

Thus if R(/, Ae)c n R' C x*(/, AJ, from Lemma 4,  R(/, A J = R'*.

Conversely if  Rif, A ) = R *,   then we have, from Theorem 2,

R(/, Ae)c n R' = R(/, \e)c n C(/, Ae) n r' c x*(/, Ap).

Corollary 3.   // £/je characteristic function of f icf. [3]) *s unbounded,

then  Rif, AJC n R' C y*(/, Ae).

Proof.   If  C(/, A ) 4 R *,  since  /,-.  is a Lindelof mapping, as in the

proof of Theorem 1, the characteristic function of / is bounded, and a con-

tradiction.   Thus from Lemma 4 and Corollary 2 we get Rif, A )c n R' C

REFERENCES

1. Ea Fa Collingwood and Ma L. Cartwright,   Boundary theorems for a function

meromorphic in the unit circle, Acta Matha 87 (1952), 83—146a    MR 14, 260.

2. C. Constantinescu and A. Cornea, ldeale R'dnder Riemannscher Fl'dchen,

Ergebnisse der Mathematik und ihrer Grenzgebiete, Na Fa, Band 32, Springer-Verlag,

Berlin, 1963.    MR 28 #3151.

3. M. Heins, Lindelofian maps, Ann. of Math (2) 62 (1955), 418-446.    MR 17, 726.
4. K. Noshiro, On the theory of the cluster sets of analytic functions, Fac. Sci.

Hokkaido Imperial Univ. 6 (1937), 217-231.

DEPARTMENT OF MATHEMATICS, SHIBAURA INSTITUTE OF TECHNOLOGY, 3-9-14,

SHIBAURA, MINATO-KU, TOKYO, JAPAN


