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TWO EXAMPLES IN PROXIMITY SPACES
P. L. SHARMA

ABSTRACT. Two examples of Lo-spaces are given. The first is an
example of a Lo-space in which not every ultrafilter is contained in a
cluster. In the Lo-space of the second example, each ultrafilter is con-

tained in a cluster, and yet not every maximal bunch is a cluster.

It is well known that in Efremovic proximity spaces each maximal bunch
is a cluster and also each ultrafilter is contained in a unique cluster. In
Example 1 we construct a Lo-space in which not every ultrafilter is con-
tained in a cluster and, consequently, in that space, not every maximal
bunch is a cluster. Surprisingly there also exist Lo-spaces in which every
ultrafilter is contained in a cluster and still there are maximal bunches
which are not clusters. One such space is outlined in Example 2.

We shall be using the terminology of [1], some of which is given below.

Let 8 be a binary relation on the power set of a nonempty set X. Con-
sider the following axioms:

(Py) ({x}, {y} € O implies x = y;

(P)) (¢, )¢ &

(PZ) (A, B)€ & implies (B, A)€ J;

(P3) ANB#@ implies (A, B) € 0;

(P,) (A4, BuUC)€d if and only if (A, B)€ 0 or (4, C) €3;

(P) (4, B)e 6 and ({b}, O) € 8 for each b€ B implies (4, C)€ §;

(P¢) (A, B)¢ 8 implies that there exists a subset E of X such that
(A, E)¢ 3 and (X - E, B) £ 0.

(i) & satisfying (P;—Pg) is called a Lo-proximity.

(i) & satisfying (P,-P,) and (Py) is called an Efremovi& proximity
(or EF proximity).

(iii) & satisfying (P) is called separated.

Clearly every EF proximity is a Lo-proximity but not conversely. If 8 is
a Lo-proximity (EF proximity) on X, then the pair (X, 0) is called a Lo-
space (resp. EF space).

A topological space X is R if and only if for each x€ X and each
neighborhood G of X, we have xicG A Lo-proximity & on a set x
induces an R, topology on X via the Kuratowski closure operator given by
A ={xe X: ({x}, A)e 8}
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Let (X,0) be a Lo-space. A collection ¢ of subsets of X is called
a bunch provided 0 is nonempty and satisfies the following conditions:

(a) A, B€o implies (A, B) € J;

(b) AUB€ o if and only if A€o or B€ g

(c) A€o implies A€ o,

0 is called a cluster if it is a bunch and satisfies the following:

(d) If GC X and (G, A) € for each A€ 0 then Geo.

A full account of this and other related material is given in [1].

Example 1. This is an example of a Lo-space in which some ultra-
filters are contained in no cluster. Since each ultrafilter is contained in a
maximal bunch, the Lo-space constructed here will contain maximal bunches
which are not clusters.

Let ?l’ ?2, 33 and 3:4 be four distinct nonprincipal ultrafilters on an
infinite set X, and let 3:5 = 3‘-1. Define a binary relation 6 on the power
set of X as follows:

A6 B if and only if at least one of the following two conditions is
satisfied:

(i) An B #£g;

(i) For some i, 1 <i <4, one of the sets A, B is in ffi and the other
belongs to .CfiH.

It is easy to verify that 0 is a Lo-proximity. We claim that the filter
?i cannot be contained in any cluster for any 7, 1 <i < 4. We prove this
for the filter 3:1. If possible suppose there exists a cluster ¢ such that
f}l Co. Then 3:1 SO_C_?I US‘.ZU 3:4. Take any 363—'2 and Ce ?3 such
that C¢F, UuF, UF,. Then BuCeF,n F,. Therefore (B U C)8P for
each P 6?1 U.cf2 U cfz. But since Uggl U ?2 U§4, (B UC)dP for each
Pe€o. As 0 is a cluster, we must have B U C€ 0. Butas C¢ 3:1 V] 9:2 V)
3:4, there exists A€ 3:1 such that C§ A. Consequently C¢ 0, so Be€o.
Since BE€ ?2 was arbitrary, we have 32 Co. Similarly 94 C o, and thus
o= 3:1 U 3:2 ) ?4. Now take two sets B and D such that BN D =g,
BE.?Z, DE?M B&’?l Ucf} uff4 and De’cfl U.‘}'ZU 3"3. By our choice
B@D and both B and D belong to 0. This is a contradiction. Thus we
conclude that there is no cluster containing the filter 3:1. The same is true
for the filters 3:2, 3:3 and 3:4.

Example 2. This is an example of a Lo-space, in which, even though
each ultrafilter is contained in a cluster, not every maximal bunch is a
cluster.

Define a binary relation & on the power set of the set R of real numbers
as follows:

(A, B) € & if and only if at least one of the following four conditions is
satisfied.

(i) AnB#£g.
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(ii) One of A and B contains an infinite subset of positive integers
and the other contains an uncountable subset of positive real numbers.

(iii) One of A and B contains an infinite subset of negative integers
and the other contains an uncountable subset of negative real numbers.

(iv) A and B are both uncountable.

The verification of O being a separated Lo-proximity is straightforward.
Also the collection { of all uncountable subsets of R can easily be seen
to be a bunch. We claim that { is a maximal bunch but not a cluster.

To show that { is a maximal bunch, take any bunch {; such that
ég 41. It suffices to show that { = (:1. To see this let A€ él' Write A' =
{n€ A: n is a positive integer}, A ={n€ A: n is a negative integer} and
B-ixe A x¢d AT L AT}. Since the set R~ of all negative real numbers is
in ¢ and (A+, R7) ¢ 5, then A+¢ ¢. Similarly A” ¢ ¢, and therefore A+¢
¢, and A"¢ (). Since A€y and A= A" UA” UB, then Be (. Let E
be any uncountable subset of R. Then E € 41 and therefore (E, B)€ d.
Since B contains no positive integer nor any negative integers and (E, B) €8
for any arbitrary uncountable subset E of R, it follows from the definition
of 0 that B is uncountable and, consequently, so is A. It follows that
A€ ¢ and, therefore, { = §1. This proves that { is a maximal bunch. To
show that ¢ is not a cluster it is enough to observe that for the set I of all
integers we have (I, A) € 8 for each A€ (, whereas I£ (.

Now we show that each ultrafilter on (R, 8) is contained in a cluster. Take
any nonprincipal ultrafilter F on R Then one of the sets P = {x€ R: x >0} and
N={x€R: x <0} is in F. Without any loss of generality, assume P € J. Let I" be
the set of all positive integers. At least one of the following three cases holds.

Case 1. 1"e%. In this case the collection 0= {A CR: Ae ¥ or 4 con-
tains an uncountable subset of P} is a cluster containing 5.

Case II. I+¢ ¥ and some member of F is countable. In this case J
itself is a cluster.

Case 1ll. Each member of J is uncountable. Let § be a nonprincipal
ultrafilter on I'. Then 0 = {ACR: AN P isuncountable or A contains
some member of Q} is a cluster containing 5.

Thus in all cases, F is contained in a cluster.

The author wishes to thank the referee for his valuable suggestions.
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