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TORUS-LIKE PRODUCTS OF A CONNECTED CONTINUA

CHARLES L. HAGOPIAN

ABSTRACT. Recently the author [s] proved that A connected continua
X and Y are arc-like if and only if the topological product X x Y is disk-
like. Here we present an analogous theorem that generalizes the result of
Fort (2] and Ganea [3] that disks are not torus-like. We prove that A con-

nected continua X and Y are circle-like if and only if X XY is torus-like.

We call a nondegenerate compact connected metric space a continuum.
A map is a continuous single-valued function.

A continuum X is circle-like if for each positive number ¢, there is an
e-map (i.e., a map such that each point-preimage has diameter <€) of X onto
a circle. Torus-like continua are defined in the same manner. Here a torus
is the cartesian product of two circles.

A continuum is decomposable if it is the union of two proper subcontinua. A
continuum is hereditarily decomposable if all of its subcontinua are decomposa-
ble. If each two points of a continuum X can be joined by a hereditarily de-
composable subcontinuum of X, then X is said to be A connected.

A continuum Y is called a triod if it contains a subcontinuum Z such
that Y — Z is the union of three nonempty disjoint open sets. When a con-
tinuum does not contain a triod, it is said to be atriodic.

A continuum is unicoherent provided that if it is the union of two sub-
continua E and F, then ENF is connected.

For any two metric spaces (X, ) and (Y, ¢), we shall always assume
that the distance between two points p; = (x;, y,) and p, = (x,, y,) of the
topological product X x Y is defined by

olpys by) = Wlxy, "2»2 + (5(y, yz))z)%.

Theorem 1. Suppose that X and Y are A connected continua and that
X x Y is torus-like. Then X is atriodic, every proper subcontinuum of X

is unicobherent, and X is not unicoherent.

Proof. Let ¢y and ¢ be distance functions for X and Y respectively.
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Define Y, and Y, to be disjoint subcontinua of Y. Note that if € =
#(Y,, Y,) and [ is an e-map of X x Y onto a torus, then either /[X x Y1]
or fIX x Y2] can be embedded in a 2-sphere [8, Lemma 1]. It follows from
paragraphs 2 through 4 in the proof of Theorem 1 in [5] that X is atriodic.
By the argument presented in paragraphs 5 through 13 in the same proof,
every proper subcontinuum of X is unicoherent. Note that Y is atriodic and
every proper subcontinuum of Y is unicoherent.

Now suppose that X is unicoherent. By Theorem 2 of [5], X is heredi-
tarily decomposable. Hence there is a monotone map g of X onto the unit

interval [0, 1] [1, Theorem 8]. Define €; to be the minimum of

(g~ tlo, n/91), g i + 13/9, 1M |n=1,2,..., 7}

Assume that Y is unicoherent. Then Y is hereditarily decomposable
and there exists a monotone map » of Y onto [0, 1].

Define € to be a positive number less than €1s qS(h"l(O), b‘l[[l/S, 11D,
$(h~1(1), h=1[0, 2/31D), and $(h= 1[0, 1/31], b~ 1([2/3, 11]). Let / be an
e-map of X x Y onto a torus T.

At least one of the disjoint continua flg~ [0, 4/9]] x Y] and
/[g"l[[5/9, 111 x Y] is lying in a planar connected open subset of T. We
assume without loss of generality that a planar connected open set S in T
contains /[g—l[[O, 4/911 x Yl.

The continuum K = /[g-l[[2/9, 1/3]1] x Y] separates L = /[g'l(O) x Y]
from M = f[g_l(4/9) x Y] in T. Hence K separates L from M in S. Note
that the intersection of

g~ M2/9, 1/30 x b= [0, 2/3111 and flg~'M[2/9, 1/31] x h=1{[1/3, 111]

is the continuum /[g_l[[2/9, 1/30] x h~1{1/3, 2/311. It follows from Janis-
zewski’s theorem [7, Theorem 20, p. 173] that either

E = flg~'[2/9, 1/31 x b~ [0, 2/3]1]

or flg~tl2/9, 1/311 x h~{[1/3, 111] separates L from M in S.

We assume without loss of generality that E separates L from M in §.
But f[g_l[[O, 4/911 x h=1(1)] is a continuum in S that meets both L and
M and misses E, a contradiction. Hence Y is not unicoherent.

According to Lemma 2 of [6], Y is not separated by any of its subcon-
tinua. By Theorem 5 of [4], there exists a monotone map & of Y onto a cir-
cle C.

Define Z,, Z,, Z3, and Z, to be arcs whose interiors are pairwise dis-
joint such that C = UL ,Z, and Z, N Z, =@=27,NZ,. Let V|, V,, V,,
and V, be arcs in C such that v, n V3 =@g=V,NV,, and for each inte-
ger i (1 <7< 4), the interior of V, contains Z;.
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Define €' to be a positive number less than € c;b(k"l[Vl], k'l[V3]),
(f)(k—l[Vz], k'l[V4]), and the minimum of {¢(k_l[zi], k~1c - v, Dli=1,
2, 3, and 4}. Let ¢ be an € -map of X x Y onto the torus T.

For each integer i (1 <i<4) define A, = X x k'l[Vl.]]. Note-that T =
=U/_4, and A, nA, =g=4,n4,.

Using arcs in T that approximate each t[g"l(O) X k’l[Zi]], we define
for each i (1 <7< 4) an arc a, in Aiﬁt[g_l[[O, 2/911 x Y] such that a =
U?-_—lai is a simple closed curve. By Fort’s lemma [2], there is a retraction
r of T onto a. The torus T is not separated by a; for otherwise, 7 re-
stricted to the closure of the planar component of T — @ would be a retrac-
tion of a disk onto its boundary, which is impossible. Note that a lies in
tlg~ o, 2/911 x Y.

In a similar manner, we define simple closed curves B and y contained
in B = t[g—][[l/3, 2/311 x Y] and t[g'l[[7/9, 111 x Y1, respectively, such
that neither B8 nor y separates T.

Since a, 8, and y are pairwise disjoint, T — (@ U B U y) has three com-
ponents. Let H be the component of T - (aU BUy) whose boundary is a
UY. Note that H does not meet (3.

Since B is a continuum in T that contains 8 and misses a Uy, B

does not intersect H. Thus H is contained in the union of disjoint continua

A=tlg 0, 1/30 x Y] and G =t[g~'[2/3, 1} x Y.
Since @ and y lie in A and G, respectively, it follows that H meets both
A and G. But this implies that H is not connected, a contradiction. Hence

X is not unicoherent.

Theorem 2. Suppose that X and Y are A connected continua. Then X
and Y are circle-like if and only if X x Y is torus-like.

Proof. If X x Y is torus-like, then X and Y are both atriodic nonuni-
coherent A connected continua with the property that every proper subcon-
tinuum is unicoherent (Theorem 1). It follows from Theorem 2 of [6] that X
and Y are circle-like.

To see that the torus-like product condition is also necessary, note that
if / is an €/2-map of X onto a circle C and g is an €¢/2-map of Y onto C,
then the function » of X x Y onto the torus C x C defined by h((x, y)) =
(/(x), g(y)) is an e-map.

Question. Must continua X and Y (not necessarily A connected) be
circle-like when X x Y is torus-like?
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