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TORUS-LIKE PRODUCTS OF X CONNECTED CONTINUA

CHARLES L. HAGOPIAN

ABSTRACT. Recently the author [5] proved that   A connected continua

X  and  Y  are arc-like if and only if the topological product X X Y   is disk-

like.  Here we present an analogous theorem that generalizes the result of

Fort [2] and Ganea l3J that disks are not torus-like.  We prove that  A  con-

nected continua X  and  Y  are circle-like if and only if X X Y   is torus-like.

We call a nondegenerate compact connected metric space a continuum.

A map is a continuous single-valued function.

A continuum  X  is circle-like if for each positive number e, there is an

c-map (i.e., a map such that each point-preimage has diameter <f)  of X onto

a circle.  Torus-like continua are defined in the same manner.  Here a torus

is the cartesian product of two circles.

A continuum is decomposable ii it is the union of two proper subcontinua. A

continuum  is  hereditarily decomposable if all of its subcontinua are decomposa-

ble.  If each two points of a continuum X  can be joined by a hereditarily de-

composable subcontinuum of X, then  X  is said to be X connected.

A continuum Y is called a triod it it contains a subcontinuum Z such

that Y - Z is the union of three nonempty disjoint open sets. When a con-

tinuum does not contain a triod, it is said to be atriodic.

A continuum is unicoherent provided that if it is the union of two sub-

continua  F  and F, then  E O F  is connected.

For any two metric spaces (X, i/f) and (Y, cp), we shall always assume

that the distance between two points pj = (xj, yj) and p2 = (x2, y2) of the

topological product X x Y is defined by

pipv p2) = Wxv x2))2 + icttyy y2))2)Vl-

Theorem 1.  Suppose that X and Y are X connected continua and that

X x Y  is torus-like.  Then  X  is atriodic, every proper subcontinuum of X

is unicoherent, and X  is not unicoherent.

Proof.   Let xfi  and c/j  be distance functions for X  and  Y  respectively.
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Define  Yj   and  Y2  to be disjoint subcontinua of  Y.  Note that if e =

0(Yj, Y2)  and / is an t-map of X x Y  onto a torus, then either f[X x Yj]

or fYX x Y2]  can be embedded in a 2-sphere [8, Lemma l].  It follows from

paragraphs 2 through 4 in the proof of Theorem 1 in [5] that X is atriodic.

By the argument presented in paragraphs 5 through 13 in the same proof,

every proper subcontinuum of X  is unicoherent.  Note that  Y  is atriodic and

every proper subcontinuum of  Y  is unicoherent.

Now suppose that X  is unicoherent.  By Theorem 2 of [5], X is heredi-

tarily decomposable. Hence there is a monotone map g  of X  onto the unit

interval [0, l] [l, Theorem 8].  Define fj   to be the minimum of

i'A(g_ '[[0, 72/9]], g-l[[(n + l)/9, 1]]) | « = 1, 2, ..., 71.

Assume that  Y  is unicoherent.  Then   Y  is hereditarily decomposable

and there exists a monotone map h  of  Y  onto [0, l].

Define e to be a positive number less than £., (p(k~  (0), h~   [[l/3, l]]),

<f)(h-\l), h~X[[0, 2/3]]), and qo(h~l[[Q, 1/3]], h~1[{2/3, l]]).  Let / be an

t-map of X x Y  onto a torus  T'.

At least one  of the  disjoint  continua flg~   [[0, 4/9]] x Y]    and

f[g~   [[5/9, l]] x Y]  is lying in a planar connected open subset of T.  We

assume without loss of generality that a planar connected open set S  in  T

contains  /[g_1[[0, 4/9]] x Y].

The continuum K = /[g_1[[2/9, 1/3]] x Y] separates L = /Lg-1(0) x Y]

from M =/[g (4/9) x Y] in T. Hence K separates L from M in 5. Note

that the intersection of

/fe-1[[2/9, l/3]]xh-l[[0, 2/3]]]    and    /Is"1 [[2/9, 1/3]] x h~![[l/3, l]]]

is the continuum /[g-1[[2/9, 1/3]] x h~1[[l/3, 2/3]]].  It follows from Janis-

zewski's theorem [7, Theorem 20, p. 173] that either

E=/[g"1[[2/9, 1/3]] xh~'[[0,2/3]]]

or /[g-1[[2/9, 1/3]] x h~l[[l/3, l]]]  separates  L   from M  in S.

We assume without loss of generality that E  separates  L  from M  in S.

But f[g~   [[0, 4/9]] x h~  (1)] is a continuum in S  that meets both L  and

M  and misses E, a contradiction.  Hence  Y  is not unicoherent.

According to Lemma 2 of [6], Y is not separated by any of its subcon-

tinua.   By Theorem 5 of [4], there exists a monotone map k  of  Y  onto a cir-

cle  C.

Define Zj, Z2, Z,, and Z,   to be arcs whose interiors are pairwise dis-

joint such that  C = U^=1zz-  and Zj Cl Z? = 0- Z2 D Z4.  Let  Vj, V2, V3,

and V4   be arcs in  C  such that  Vl C\ V? = 0= V2 Pi V"4, and for each inte-

ger 7 (1 < z< 4), the interior of  l/.  contains   Z..
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Define e'  to be a positive number less than £j, <p(k~   [VjJ, k     LV5J),

d>(k-l[V2], £_1[V4]), and the minimum of \<p(k-l[Z.], k~l[C - V.])\   i = 1,

2, 3, and 41.  Let  t be an f'-map of X x Y onto the torus   T.

For each integer i (1 < i < 4)  define A. = t[X x k~l[V. ]].  Note that T =

= U*-iAf and Ajn/.3=0=A2nA4.

Using arcs in  T that approximate each  t[g~  (0) x k~   [Z.]], we define

for each  i (1 < i < 4) an arc  ex.  in A. f~l «[g-1[[0, 2/9]] x Y]  such that  a =

U _la,  is a simple closed curve.   By Fort's lemma [2], there is a retraction

r of T onto  a.  The torus  T is not separated by  a; for otherwise, r re-

stricted to the closure of the planar component of T - a  would be a retrac-

tion of a disk onto its boundary, which is impossible.  Note that  a  lies in

t[g-l\L0t2/9H\xY].

In a similar manner, we define simple closed curves  B and y contained

in  B = t[g~1[[l/3, 2/3]] x Y]  and i[g_1[[7/9, l]] x Y], respectively, such

that neither B nor y separates  T.

Since  a, B, and y  are pairwise disjoint, T - (a \j B U y) has three com-

ponents. Let H be the component of T - (a U B U y) whose boundary is a

uy. Note that H does not meet B.

Since B  is a continuum in  T that contains  B and misses  a U y, B

does not intersect W.   Thus  f/  is contained in the union of disjoint continua

A = t[g~l[[0, 1/3]] x y]    and    G = t[g~l[[2/3, l]] x Y].

Since  a  and y  lie  in   A   and  G, respectively, it follows that  H meets both

A   and G.  But this implies that H is not connected, a contradiction. Hence

X is not unicoherent.

Theorem 2.  Suppose that X and Y are X connected continua.   Then X

and Y are circle-like if and only if X x Y  is torus-like.

Proof. If X x Y is torus-like, then X and Y are both atriodic nonuni-

coherent X connected continua with the property that every proper subcon-

tinuum is unicoherent (Theorem 1). It follows from Theorem 2 of [6] that X

and  Y are circle-like.

To see that the torus-like product condition is also necessary, note that

if / is an c/2-map of X  onto a circle  C and g  is an f/2-map of  Y onto  C,

then the function h of X x Y onto the torus C x C defined by h((x, y)) =

(/(*), giy)) is an f-map.

Question. Must continua X and Y (not necessarily X connected) be

circle-like when X x Y is torus-like?

The author gratefully acknowledges conversations about the topics of

this paper with R. W. Fitzgerald and F. B. Jones.
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