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SOME COMMUTATIVITY RESULTS FOR RINGS WITH

TWO-VARIABLE CONSTRAINTS

H. E. BELL

ABSTRACT. It is proved that an associative ring R  has nil commutator

ideal if for each  x, y e R, there is a polynomial p(X) £ XZ[Xj    for  which

XJ ~ yp(x)  is central.   Two restrictions on the  p(X)  which guarantee com-

mutativity are established.

Let  J   denote the set of those polynomials in two noncommuting inde-

terminates which have integer coefficients and constant term zero.  We con-

sider associative rings  R  with the property that for each ordered pair (x, y)

of elements of  R, there exists a polynomial p(X,  Y) £ f, depending on (x, y),

for which

(1) xy - p(x, y)  £ Z,

where  Z  denotes the center of  R.

Putcha and Yaqub [6] have shown that if each p(X, Y)  in (1) is a sum of

terms each of degree at least two in both  X  and   Y, then  R    C Z, and hence,

by a long-standing theorem of Herstein [4], R has nil commutator ideal.  Un-

less the  p(X,  Y)  in (1) are restricted in some fashion, R may be badly non-

commutative—indeed the ring of 2 x 2 matrices over  GF(2) satisfies a condi-

tion of type (1), obtained by linearizing the identity x    = x  .  However, less

severe restrictions than those imposed by Putcha and Yaqub, while not im-

plying that any power of  R   is central, will still yield the result that  R   has

nil commutator ideal;  and this note deals with one such condition, together

with some special cases of it which actually yield commutativity.

Letting  XZLX] denote the ring of polynomials over the integers which

have zero constant term, we state our major theorem as follows:

Theorem 1.   Uet R  be a ring such that for each ordered pair (x, y)  of

elements of R  there exists a polynomial p(X) £ XZ[x], depending on ix, y),

for which

(2) xy - ypix)  £  Z.

Then the commutator ideal C(R) is nil and the nilpotent elements of R form an ideal.

1. Proof of Theorem 1.

Lemma 1.   Let  R  be a ring satisfying an identity  q(X) = 0, where  q(X)

is a polynomial in a finite number of noncommuting indeterminates,  its coef-
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ficients being integers with highest common factor 1.  If there exists no prime

p for which the ring of 2 x 2  matrices over GF(p) satisfies  q(X) - 0, then R

has nil commutator ideal and the nilpotent elements of R form an ideal.

The proof of this lemma, which depends on a deep result of Amitsur on

P/-rings, may be found in [2],

Lemma 2.   Let  R  be a ring satisfying the hypothesis of Theorem 1  and

having no nonzero divisors of zero;  and let (x, y) be an arbitrary ordered

pair of elements of R.  If p(X) £ XZ[X] is such that xy — yp(x) £ Z, then

xy    = y x  or xy = yp(x).

Proof.  Suppose that xy    pyx, and write

(3) xy = yp(x) + z,     where  z £ Z;

and let p X(X) £ XZ[x] be such that

(4) x2y -y/7j(x2)  € Z.

Repeated substitution of (3) in (4) yields  x(yp(x) + z) - yp Ax  ) e Z,

(yp(x) + z)p(x) + xz - ypr(x2) £ Z, and finally

(5) y((p(x))2 - p:(x2)) + z(x +..p(x)) £ Z.

If (p(x))2 - p-j(x ) -/ 0, (5) implies that xy = yx, contrary to our supposition

that xy    /: y x;  hence

(6) (p(x))2 - px(x2) = 0    and    z(p(x) + x) £ Z,

so that 2 = 0 or p(x) + x e Z.   But if p(x) + x £ Z, then (3) yields  xy - yp(x)

— xy — y(p(x) + x) + yx e Z, implying that  y  commutes with xy + yx and,

hence, that  y    commutes with x;  therefore  z = 0 and (3) now shows that

xy = yp(x).

Proof of Theorem 1.   It will suffice to show that prime rings satisfying

the hypothesis of Theorem 1 are commutative (see [2]).  Accordingly, let  F

be such a prime ring;  we first show that  F  has no nonzero divisors of zero.

Suppose that ab = 0, a 7= 0, and  r is an arbitrary element of  F. There exists

tf(X) £ XZ[X]  for which  b(ra) - (ra)q(b) £ Z;  and since  aq(b) - 0, we have

b(ra) £ Z and thus sa(bra) = 0 = (bra)sa for all s £ R.  The primeness of F

now implies that  bra = 0  and hence that  b - 0.

Assume that F is a noncommutative prime ring satisfying (2). The identity

(7) (xy2 - y2x)(yx2 - x2y)(xy2x - yx2y) = 0

is not satisfied by the ring of 2 x 2 matrices over any field  GF(p), as may

be verified by substituting the matrices  [j Q]  and  [g A for x and  y respec-

tively;   thus, by Lemma 1, F  cannot satisfy (7), and there must exist ele-

ments  a, b of  F   for which  ab    — b  a, ba    — a  b, and  ab a — ba b are all

nonzero.
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If p(X) £ XZ[x] is such that ab - bpia) £ Z, it follows from Lemma 2 that

(g) ab = bj)ia).

Now let  s(X) £ XZ[X]  satisfy

(9) bpia) - pia)sib) e Z

and apply the result of Lemma 2 to the ordered pair  ib, pia)). It ipia))  b =

bipia))2 , it follows from (8) that  a2b = aibpia)) = bipia))2 = ipia))2b, so that

a    = ipia))     and  a    commutes with  b, contrary to the choice of  a and  b.

Therefore, by Lemma 2, bpia) = pia)sib), which combines with (8) to give

(10) ah = pia)sib).

Now it is immediate from Lemma 2 that  R   is an Ore domain and can be

embedded in a division ring  D.   In  D, (10) implies that  b(sib))~    = a~  pia)

commutes with both a and  b;  and (8) written in the form  ab = baa~   p(a)

shows that  ab and  ba  commute, contrary to the original choice of a and  b.

This contradiction completes the proof of Theorem 1.

2. Two commutativity theorems.  In this section we single out two condi-

tions of type (2) which imply commutativity.

Theorem 2.   Let  R   be a ring such that for every ordered pair (x, y)  of

elements of R, there exists an integer n = nix, y) > 1  for which xy = yx".

Then   R   is commutative.

Lemma 3.   Any ring  R  satisfying the hypothesis of Theorem 2  has each

of the following properties:

(a) Idempotents of R  are central.

(b) R   is a duo ring (i.e. one-sided ideals are two-sided);  moreover

ab - 0   implies ba - 0, so that there is no distinction between right and left

zero divisors.

(c) Commutators in R  are central.

(d) If a, b e R  are such that a(ab — ba) = biab — ba) = 0, then ab — ba =

0;  similarly, if aiab — ba)x — biab — ba)x — 0 for some x £ R, then

iab - ba)x = 0.

Proof, (a) If x £ R and e is idempotent, there exist positive integers

tw, n such that eiex — exe) = (ex — exe)em and eixe — exe) = ixe — exe)e";

hence  ex — exe = xe — exe = 0.

(b) Let  /  be a right ideal of R, a £ I and  r £ R;  note that since  ra =ar"

for some  n > 1, ra £ I.   Thus all right ideals are two-sided, and a similar

argument holds for left ideals.

Now let  ab = 0.  Since  ba = ab"  tor some  n > 1, ba = 0 as well.

(c) By Theorem 1 the commutator ideal is nil and, hence, contained in

the Jacobson radical  J(R);  therefore, it will suffice to show  ](R) C Z. If we
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assume the existence of an element a £ ](R)\Z, then there is an element

b £ R  and integers  m, n > 1  for which ab = bam  and ba = ab" 4 ab.  It fol-

lows that  ab = abb"~ 1am" l;  and because   b"~ lam~ 1 £ J(R), we now have

ab = 0.  Similarly, ba - 0  and we have a contradiction.

(d) Suppose   a(ab — ba) = b(ab — ba) = 0;   in view of (c), a  b = ba     and

b a - ab   .  Suppose  ab - ba ?= 0 and let  m, n > 1   be such that  ab = bam and

ba = abn.  Substituting each of these expressions into the other yields  ab =

ab"am~     and  ba = bambn~   .  If m and  n are both even we thus get ab =

ba = amb";  on the other hand, if one of n, m is odd, we have

ab -ba = abbn~lam~1 - baam~lbn~l = (ab - ba)am-Xbn~l,

which is zero since  (ab - ba)a = 0.

Finally, if x £ R  and A  is the annihilator of x, we get the second

statement of (d) by applying the preceding argument to the ring  R/A.

Proof of Theorem 2.   It will suffice to prove commutativity under the

additional hypothesis that  F  is subdirectly irreducible, in which case (since

F  is a duo ring) the set of zero divisors is precisely the annihilator of the

unique minimal ideal  5  [l, Lemma 3].

The initial step is to show that zero divisors in  F  are central. Accord-

ingly, suppose a is a noncentral zero divisor which fails to commute with

some element  b £ R;  and consider the case where  b is also a zero divisor.

Then by (d) of Lemma 2, we have one of (ab - ba)a and (ab - ba)b different

from 0 and  (ab - ba)R  is a nontrivial ideal;  therefore if 0 / s £ S, there

exists an element x £ R  for which s = (ab — ba)x.   But 0 = as = bs =

a(ab - ba)x = b(ab - ba)x, and from (d) of Lemma 2 we then get (ab - ba)x = 0,

a contradiction.  Now consider the case where  b is not a zero divisor and let

m, n > 1   be such that  ab = bam and  ba — ab".   Since  ab  is a zero divisor,

ab and  a commute, so that  a(ab — ba) — (ab — ba)a - 0  and  a    commutes

with  b.   If m is odd, repeating some of the computation in Lemma 2(d) shows

that  ab - ba = (ab — ba)am~   b"~    =0;  on the other hand, if m is even,

ab = amb, am = a, and  am~     is a nonzero idempotent.   Recalling that any

nonzero central idempotent of a subdirectly irreducible ring must be a multi-

plicative identity element, we get a contradiction of the fact that a was a zero

divisor.  Therefore zero divisors of F  are central.

Now suppose that  F   is not commutative and  b 4 Z.   There then exist

a £ R  not commuting with  b and an integer /' > 1   such that  ba = ab1. Since

a cannot be a zero divisor and since ab — ba = a(b - bJ) is a zero divisor

(nilpotent, in fact), b - b! must be a zero divisor, hence central.  We have

now arrived at a contradiction of Herstein's well-known result that a ring  F

is commutative if for each x e F, there is an integer  n(x) > 1   for which

x — x £ Z;  and our proof is complete.

Theorem 3.   Let  R  be a ring such that for every ordered pair (x, y) of
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elements of R, there is a polynomial p(X) e XZ[x] such that xy = yxp(x).

Then  R   is commutative.

Proof.   Again applying the given condition to   e, ex — exe, and xe — exe

shows that idempotents must be central.  Also, since  x    - x p(x) for some

p(X) £ XZ[x], R is periodic by a result of Chacron [3];  therefore, R   is either

nil or contains a nonzero idempotent.

Suppose now that R is subdirectly irreducible. If R contains a nonzero

idempotent, then it must have an identity; thus, for each x e R we have x =

xpix), and R is commutative by the major theorem of [51. On the other hand,

if  R   is nil we have

xy = yxpix) = xyqiy)pix) = yxpix) qiy)pix) = yxqiy)rix)

tor an appropriate element  r(X) £ XZ[xL  In particular, xy = yxyz    for some

element  z,  e R; and, continuing inductively, for each positive integer  n we

get an element  z    £ R  for which  xy = y"xyz  , so that xy = 0 and  R  is a

zero ring.   Therefore, if  R   is subdirectly irreducible, it is commutative; and

the proof of Theorem 3 is finished.

The hypothesis of Theorem 3 cannot be weakened to the condition that

xy - yxpix) £ Z, as we see by noting that there exist noncommutative rings

satisfying the identity x    =0.  However, it may be of some interest (but not

enough to  justify  including the  proof) to  note  that  rings   satisfying the

weaker   hypothesis   are   polynomial-identity rings—satisfying  the   identity

[[x, y], z]2[x, y] = 0.
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