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A FINITE VERSION OF SCHUR’S THEOREM

R. S. KULKARNI !

ABSTRACT. A necessary and sufficient condition for constancy of
curvature in terms of umbilicity of small metric spheres is given.

The following is a remark on a paper of Kowalski in which he has in-
vestigated the “‘properties of hypersurfaces which are characteristic for
spaces of constant curvature’’ and papers of Nomizu [3] and Nomizu and Leung
[4]. This type of investigation goes back to Schur [S]. For other results of
this type we refer to Cartan [1, Chapter V].

We follow the terminology of Kowalski [2]. By a ‘metric sphere’ in a
Riemann manifold M we understand a subset consisting of points at a fixed
distance from a fixed point. If the fixed distance is sufficiently small the
metric sphere is a smooth hypersurface. Kowalski [2, Theorem 8] shows that
if every sufficiently small metric sphere in M is totally umbilic and dim M >

4, then M is conformally euclidean. We shall improve this result as follows:

Theorem. Let M be a connected C™ Riemann manifold of dimension
> 3. Then every sufficiently small metric sphere is totally umbilic iff M

is of constant curvature.

Total umbilicity of metric spheres is, roughly speaking, a finite version
of the infinitesimal isotropy condition in Schur’s well-known theorem: namely
if M is a connected Riemann manifold of dimension > 3 such that the
sectional curvature depends only on the point (and not on the 2-plane section
at the point) then the curvature is actually constant. For this reason we have
referred to the above theorem as a finite version of Schur’s theorem.

Proof of the theorem. First of all note that a space of constant curvature
(without any dimension restrictions) has the stated property, cf. e.g., (2,

’y

Proposition 5). (Alternately note that the property is ‘‘visibly’’ true in the
Euclidean case, and since umbilicity is a conformally invariant notion, the
property also holds in the spherical and hyperbolic cases.)

Let us now prove the converse. Suppose that every small hypersphere
of M is totally umbilic. Fix a point P and a unit tangent vector ¢; at p.

Let y be geodesic through p tangential to e,. Choose a point ¢ on'y, ¢ £ p,
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sufficiently close to p so that the hypersphere centered at ¢ and passing
through p is contained in a normal coordinate neighborhood around g. Now
choose a moving frame {el e em} in a neighborhood of p so that e is
tangential to geodesics through g. Let {col, cee com} be the corresponding

dual forms. They satisfy the structure equations

m m
1) dwa = Z Wap@p dwab = Z D@yt Qab’ Dap t Ppa = 0.
b=1 c=1

We have w, = dr where r is the radial parameter measured from g. Hence
0=dw, =" o, o . Itfollows that w, is a linear combination of

1 a=2"1a a la
Wy ne O only. On the other hand, ), define the second fundamental
forms of metric spheres centered at g; hence by the total umbilicity of the
metric spheres they must be of the form w, = )\a)a + p, 0, where A, p, are
smooth functions. Combining these two observations we see that p =0

and so

Dig = Awa'

Taking the exterior derivative and using the structure equations, we have

do| = dho + Ao o, + 20 Ao ,0,
b22
> @105+, = A 2 ® 4@y + Oy
b22 b>2
Consequently

Qla =dw, + Ao, = ON/Or + )\z)wla)a + other terms.

This shows that at p the sectional curvature of the 2-plane spanned by e,
and e, is - (dA/dr + A%). Since this expression is independent of , it
follows that the sectional curvature of the 2-plane containing e, is the same.
Since e, is arbitrary, we see that all sectional curvatures at p are the
same. If dim M > 3, by the Schur theorem it follows that M is of constant
curvature. A further use of Codazzi’s equation implies that A is in fact
constant on a metric sphere. Q.E.D.

Remark. The above theorem, just as the Schur’s theorem, of course,
breaks down when dim M = 2; in fact any curve on a 2-dimensional mani-
fold is trivially totally umbilic. In this case we can restore the theorem by

making a stronger hypothesis.

Theorem. Let M be a 2-dimensional connected Riemann manifold such
that every sufficiently small metric sphere is of constant geodesic curvature;

then M is of constant curvature.

(Tn Kowalski’s terminology constancy of geodesic curvature of a metric

sphere is the same as a metric sphere being a U-sphere. So this theorem is
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a partial improvement of [2, Theorem 3]. Converse of course is true and
trivial.)

Proof. In the above notation, constancy of geodesic curvature means
that the function A is constant on metric spheres—hence it is a function of
r. So the sectional curvature —(d\/dr + A?) is constant (say c) on a metric
sphere (say s). Now considering the metric spheres with centers on S, and
continuing this way, we see that the set of points where the sectional
curvature is ¢ is open and closed. Since M is connected, it must be of

constant curvature, Q.E.D.
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