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A NOTE ON LIFTING BRAUER CHARACTERS

STEPHEN M. GAGOLA,JR.

ABSTRACT.   A Brauer character of a finite group may be lifted to an

ordinary character if it lies in a block whose defect groups are contained

in a normal p-solvable subgroup.

By the Fong-Swan theorem [2, Theorem 72.1], an irreducible Brauer

character of a finite p-solvable group  G may be lifted to an ordinary (com-

plex) character of  G.   In other words, every Brauer character  <f> is the restric-

tion of some ordinary character  y to the p-regular elements of G.  Professor

I. M. Isaacs has shown [5] that the character y may be chosen to satisfy

certain extra conditions which when  p is odd, uniquely determine  y.  By ex-

tending a theorem which appears in that paper 15, Theorem 3.1], the hypothe-

sis of p-solvability on  G may be weakened somewhat.

Specifically, the main result of this paper is the following

Theorem.   Let <fi  be an irreducible Brauer character of the finite group

G, and assume that  <f> lies in a block whose defect groups are contained in

a normal p-solvable subgroup of G.   Then  <fi may be lifted to an ordinary

character  y of G.

We will not be concerned with general uniqueness questions here.

For the remainder of this paper, G denotes a finite group, and  F is a

field of characteristic p which is a splitting field for all subgroups of G.

If  V  is an F[G]-moduIe, let  /(V) be the intersection of all maximal submod-

uies of  V.   Finally, if  U  and  V  are F[G]-modules affording the Brauer char-

acters  cf> and fi, respectively, and if  V is irreducible, then the multiplicity of

fi in  <f> is the multiplicity of  V  as a composition factor of  U.

Lemma 1.   Let  N <] G and let  W  be an irreducible F\N\modulc which

affords the Brauer character  fi.   Assume that  fi can be lifted to an ordinary

character f in such a way that the inertia groups i)r(/z) and S^CP) coincide.

Denote by  [L     the Brauer character which the induced module  W     affords.

Let o denote the set of all irreducible Brauer characters  (f> of G which are

constituents of \l   , but which are not afforded by any composition factor of

j{W   ).  Finally, let J   denote the set of ordinary irreducible characters  y of

G which are constituents of *{* '  and which have the property that the
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decomposition number d    ,   does not vanish for some <f> e S.   Then, restriction

to p-rcgular elements is a 1-1 correspondence between the elements of J

and the elements of h,

Proof.  Write  p. ' = Iif,/,iji + 0, where no constituent of $  lies in  S.

We first compute the restriction of  <fc to  N, where  <fi 6 S,   Let  W and   V  be

irreducible   FL/Vj- and l'[G]-modules affording  p and  <fi, respectively.  By

Clifford's theorem, VN is completely reducible and, since   F  is a splitting

field for  N, the multiplicity of  W as a composition factor of  VN is the F-di-

mension of hornp[N~i(W, V,,).  By the Nakayama relations [4, p. 556], this di-

mension equals the F-dimension of homprGl(W   ,  V). Since  V  is irreducible,

this last space is naturally isomorphic to homp.[>■]("/   /j(W   ),  V).

Since  W   /J(W ') is completely reducible, and  F  is a splitting field for

G, this last space has F-dimension equal to the multiplicity of  V in W  /](W  ).

However, (ft e o, which means that  V  is not a composition factor of }(W   ),

so that the multiplicity of  V in   W/](W   ) is  /..  Therefore, p appears in

ciN  with multiplicity  /..  We may write

^N = f^H-i ■*-+ Pt)>

where  p - p.   and  p., . . . , p   are the distinct G-conjugates of p.

Similarly write  1*    = 2 e  \ + X, where each  y lies in  J , and no con-

stituent of X lies in J. Since 9G(jti) = BG(*P), the number of distinct G-con-

jugates of W is  t, and by Frobenius reciprocity,

Xn-«x-«i + " ■ + *!>.

where  W = ¥.,  f'     . . . , 1*    are the distinct G-conjugates of  *P.

Let  R  and S denote the set of p-regular elements of  G  and N, respec-

tively. We now use the equations

(V \S)G = 0PG)R       and     (xlR)N=(XlV)ls-

(The first equation follows from the fact that the values of /x     may be

computed by the usual formulas for an induced class function, a fact proved

in [l, §25].) The first equation may be rewritten as

E f^ + $ = E <?xxR + XR.
0eS Xe3"

This implies that for v € J,

XR =  E </x<£0 + *7X,

where   77    has constituents appearing in  $. Now, no  <fj in  o appears as a

constituent of  X„, so that

(*) f<t> = E <?x</x0.
xeT
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For y el, the equation   (y\R)N = (xN">\s implies

£  dx^N+(vx)N = ex^i+--- + rV>>
c£eS

and since <£N = /^(ftj + • • • + fi(), we get

(**^ ex > 2. ^V

Now, combining  (*) and  (**):

f<f> = ^>exdx<f> * ^c  2-. rfx*' /<£' ̂ X0
X£J X£§ <£'eS

= JTcl \d*<t>'d*<l>)t<t>'
0'eS \Xe-T /

The last inequality is valid since   (*) implies that, for every  </j 6 o,

there exists   y € J   with dx, t 0.  We now have that equality holds through-

out, in the above chain of inequalities, and, in particular, ^■xe<r'ix, = 1  holds

for every  <fi e o.   Therefore, for every   r/j e d, there exists a unique  y & S

with  dx , = 1, and d  >. - 0 for  y   j= y in J .   But then  (*) implies that /,

= <?x, and since  fi(l) = *P(1), y must be a lift of (f>.  We have now proved that

every  <f> e b has a unique lift  y in  J.   Finally, if y 6 J, then, by definition,

there exists aS e S with d% , ^ 0. But, by the above, y is a lift of <£. Thus,

the map  y h-» yR  is a 1-1 correspondence between  J   and S.

Definition.  Let   V  be an F[G]-module and  N  a subgroup of G.   V  is Af-

reducible if every exact sequence of F[G]-modules   U >—> V —»Y, which splits

when considered as a sequence of F[/V]~modules, necessarily splits as a se-

quence of F[G]-modules.  Thus, every module is G-reducible, and a module

is 1-reducible iff it is completely reducible.   (By using the other two posi-

tions of the exact sequence, one can define the usual notions of N-injectiv-

ity and /V-projectivity.)

Lemma 2.  Let  V be an F[G]-module and N a subgroup of G.   Let  T be

a set of coset representatives for the right cosets of N  in  G. Assume that

there exists   a € CFrr~i(/V) such that   2 x"   ax acts like the identity on

V.   Then  V  is N-reducible.

Proof. This is essentially the proof of (d) —> (a) of Theorem 1 of [3].

Lemma 3.   Let N <3 G and let fi be an irreducible Brauer character of N.

Assume that   n. can be lifted to an ordinary character W with the property

that §r((i) = ^(W).  Finally, let B  be a p-block of G whose defect groups

are contained in  N.   Then the restriction to p-regular elements defines a
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1-1 correspondence between the set of irreducible constituents of W     which

lie in  B  and the set of irreducible Brauer constituents of jx     which lie in  B.

Proof.  Define  o and  .1   as in the statement of Lemma 1, and again let

R  denote the set of p-regular elements of G.   Then  y I—► X p  ls a 1~1 cor"

respondence between the elements of O and  J. Clearly  v ejj  iff  y     e B.

It suffices to show that all the irreducible Brauer constituents of  p     which

belong to  B  necessarily lie in  o.

Let   IV  afford  p and let  e denote the centrally primitive idempotent of

F[G] which corresponds to the block  B.   Then  WG = (\VG)e + (H'G)(l ~ e).
G

The composition factors of  (W   )e  afford Brauer characters in  B, and no

composition factor of  {W   )(l - e) belongs to  B.   We must show that  ]{W   )

C (W   )(l - e), and this is equivalent to the statement that  (IV   )e is complete-

ly reducible.

Since  B  has a defect group contained in  N, it follows that the block

idempotent  e has a representation of the form  e = Z     _ x"   ax, where  T  is

a set of coset representatives for N  in   G, and  a e Cpff-lV/V).  (This is es-

sentially Lemma 54.8 of [2, p. 346] with   F in place of  R.)

Thus, (W ')e  is /V-reducible by Lemma 2.  Therefore, (M'   )e  is complete-

ly reducible as an F[G]-module iff (W   )e|N  is completely reducible as an

F[N]-module.  However  ('WG)e\N  is a summand of (WG)N = ?-xeT • W ® x

where each   W ® x is simple.  Hence, (W   )c  is completely reducible, and we

are done.

In order to prove the main theorem of this paper, we need the strengthened

version of the Fong-Swan theorem appearing in L5]-

Lemma 4.   Let  N  be a p-solvable group and p an irreducible Brauer

character of N.   Then there exists an ordinary irreducible character S*  of N

which lifts  [i and satisfies § . (fj.) - 3 . (¥), where  A   is the automorphism

group of N.

Proof.  This is contained in Theorem 5.4 of L5].

We now present a proof of the theorem quoted at the beginning of the

paper.

Let  (f> be an irreducible Brauer character of  G  and assume that  (f>  lies

in a block whose defect groups are contained in the normal p-solvable sub-

group N.   Let  [i be a constituent of  <pN  and lift  p to an ordinary character

W satisfying the conclusion of Lemma 4.  Since  G  induces on  N  a group of

automorphisms, clearly §c(p) = 3,-(W).  Lemma 3 now implies that cf> has a lift

(which is a constituent of  *P   ).

We remark that by replacing  N by the largest normal p-solvable subgroup

of G  (so as to assume that  N  is characteristic in  G), it is easy to show

that  (f> has a lift  y which satisfies J       (c,((^) = ^Ant(G)^^'
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Closing remarks.  I would like to thank the referee for his careful read-

ing of this paper and for pointing out that, in the situation of Lemma 1, the

set £>  consists precisely of those irreducible Brauer constituents of  fi

which have vertices contained in  N.   (Of course, the vertex of a Brauer char-

acter means the vertex of an irreducible F[G]-module which affords it.) This

observation follows from the equivalence of (i) and (iii) in the following

Proposition.   Let  N O G, W an irreducible F[N]-module and V an ir-

reducible F[G]-module.   Assume that  V  is a composition factor of W   .   Then

the following conditions on   V are equivalent.

(i) A vertex for V  is contained in N.

(ii) W    = 1/4-5  where no composition factor of U is isomorphic to  V,

and S is a direct sum of simple modules all being isomorphic to  V.

(iii)  V  is not a composition factor of J(W   ).

Proof,  (i) —• (ii).  Write  W    - U + S with  S  isomorphic to a direct sum

of copies of  V  and with  dimp U minimal.  Suppose  X  and   Y  are submodules

of U  with   Y <X  and  X/Y S V.   Then   V >—« X —» V is an exact sequence

of F[G]-modules. Since  X is a submodule of W ', and  W   \N is completely

reducible, the sequence splits when regarded as a sequence of F[/V]-modules.

However, a vertex of V is contained in N, so  V is N-projective and the se-

quence splits as a sequence of F[G]-modules. Thus   V is isomorphic to a

submodule   V.   of  X  and, hence, of  U.   By considering the sequence   V.   '—>

U—» 17/Vj   and using the fact that  Vj   is A/-injective, we have  U = UQ + Vl.

But then  W    = 1/    + {V. + S), contradicting the minimality of dimpU, and

thereby proving (ii).

(ii) —> (iii).  The hypothesis of (ii) implies ](W^) C U and (iii) is immediate.

(iii) —• (i).  Since  V is a composition factor of  W   , it follows from the

Nakayama relations and the semisimplicity of   VN that   W is a summand

(and, hence, a homomorphic image) of  VN-  By the Nakayama relations again,

V  is isomorphic to a submodule, say   V 1( of  W   . Since  V. <£ }(WG), we have

W    = V, 4- M  for some maximal submodule  M  of  W   .   This equation implies

that  Vj  is N-projective, and so  N  contains a vertex of  V., proving (i).

As the referee has kindly pointed out, this Proposition, together with

Lemmas 1 and 4 imply the following strengthened version of the main theo-

rem of this paper:

Theorem. Ler rp' be an irreducible Brauer character of G and assume

that a vertex for a module affording c£ is contained in a normal p-solvable

subgroup of G.   Then  <f> may be lifted to an ordinary character y of G.
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