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A LATTICE THEORETIC CHARACTERIZATION

OF AN INTEGRAL OPERATOR 1

LAWRENCE LESSNER

ABSTRACT.    We are concerned here with obtaining necessary and

sufficient conditions for a linear operator, K:£(\., (?,, p..) —

M(%2, &2, p-J, to be represented by an integral, K(f) = fk(x, y)f(y) dy,

with an   8 2 X  3j   measurable kernel  k(x, y).   That such conditions are

developed in a lattice theoretic context will be shown to be quite nat-

ural.   Our direction will be to characterize an integral operator by its

action pointwise:   i.e., K(. Xx) is a linear functional on a subspace of

the essentially bounded functions.   Such a development leads one to define

the kernel, k(x, y), in a pointwise fashion also, and as a result we are

confronted with the question of the   Q2 X 3,   measurability of  k(x, y).

Definitions and notation.   The following definitions, unless otherwise

noted, may be found in [l] and 12].

Definition.   The real vector space  R  is called an ordered vector space

when  R is partially ordered by  < and satisfies for x, y, z €  R,

(1) x < y implies  x + z < y + z,

(2) x > 0  implies  rx > 0  for any real number  r > 0.

The ordered vector space   R  is called a Riesz space when for each  x, y £

R  the least upper bound of x  and y, written  x V y, exists in   R.    The Riesz

space  (R, <)  is called Dedekind complete if for any subset  \xj C R  such

that there is an upper bound y £  R  for  \xj, then the least upper bound of

\xj exists in   R: written   sup{xaj € R,    A sequence (x  ) on  R  is said to

converge in order to  x £  R, written  x    —> x(0), whenever  limx    = lim x   —
D 77 -n n

x where

limx    -sup inf x        limx    = inf sup x.,
n   k>n n   kin

and  inf as usual means greatest lower bound.   By 0 < x    T x  we mean  0 <

x    < x  +,   and  sup  x   = x; x   J. x means  x   > x   .,   and  inf x    = x,   A lin-
77—72^1 r n     n '72* 77—77 + 1 7277

ear mapping   T: R j —* Rj  between Riesz spaces is called (O)-continuous

when it maps order convergent sequences into order convergent sequences,

and  T is called positive when  x > 0 implies   T(x) > 0.
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Let   (X, It, fi) be a ff-finite measure space and denote by  M(X)  the col-

lection of all equivalence classes of tl measurable finite  p a.e. teal valued

functions on  X  modulo  p  null functions.   For /, g € M(\) define / < g pro-

viding f(x) < g(x) tot p a.e.  x £ X, then  (M(X), <)  is a Dedekind complete

Riesz space:   see [l, p. 126] or [3, p. 335].   A linear subspace  i C M(X)  is

called an ideal when g £  M(X), f £ X  and  |g| < |/|   implies  g £ a.   We say

that a sequence   tt — (x.) is admissible for X   when  \x \ is a countable col-

lection of disjoint, measurable sets of finite measure where \Jx. = X  and

\(xi) £ A.   For a set   £,  y(F)  is the characteristic function of  F.    We shall

be required to distinguish between equivalence classes of functions and

functions which are defined and finite everywhere.   Let ih be the canonical

homomorphism that sends a function   /, defined and finite real valued a.e.,

to its equivalence class (/): ifj(f) = (/).    For  S C M(X), let  S = \f\f: X —>

(—oo, oo)  and  ifj(f) £ S\.   We may partially order  M(X) as follows:   for /, g £

M(X),/< g  if and only if for all  x £ X, fix) < gix).   It S is an ideal of  Ai(X),

then  S   is an ideal of M(X).   Although  M(X)  is Dedekind complete, in general

M(X) is not Dedekind complete.   For L  an ideal of M(X), f , f £  L, we have

/    —* /(0) in  L  when there exists  g £ L   such that for all  n and all  x £  X,

\fn(x)\ < gix) and  limfjx) = fix)  [2, p. 64].

For the duration of this paper we shall assume that  (X,, Ctj, pj)  and

(X2, CL, pA) ate ff-finite measure spaces with respect to nonnegative, count-

ably additive, extended real valued set functions  pj   and p2, respectively.

We also assume that  (Xj, Ct   , p^) is a separable measure space.   We shall

denote by J-   an ideal of  M(Xj)  with an admissible sequence  tt =(X).

Let   T: X. —> ,M(X  ), S  a linear subspace of X  and  T: S —► M(X  );  then

f is called a lift of  T on  5   when for all f e S, if, o f(f) = T(f).   If a lift  f

of  T  on  S  exists, it need not be unique, also  T  need not inherit even the

simplest properties of  T:    linearity, positivity, order continuity.

A map   K: A —> M(X A) is called an integral operator when there is k(x, y)

£ M(X2 x Xj)  such that for / £ £,

K(f)(x)=fk(x,y)f(y)dp1(y).

k is called the kernel of  K, and the association is denoted  K = [k].   That

an ideal  i~  of  A1(X.) with an admissible sequence tt is a natural domain for

an integral operator may be inferred from [4j and [7J.   For each  f £ X  and

a.e.  x £  X2  fixed, k(x, y)f(y) is integrable on  X^; so for a.e.  x,

\\k(x, y)\f(y) dpy(y) <oo

and, by Fubini's theorem, defines a function in M(X_).   Thus   K: X  —► ,M(X  )

can be considered the difference of two positive operators  [k  ], [k~]:   i.e.,

K(f) =fk\x, y)f(y)dy -fk~(x, y)f(y)dy
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where  [k ]■ i. —> MiXA are positive operators.

The following theorem gives necessary and sufficient conditions for an

operator  T: A. —' MiXA  to be an integral operator.   Since an integral oper-

ator is necessarily the difference of two positive operators, it will suffice to

consider positive operators only.

Theorem.   Let  T: X. —+ MiXA be a positive linear operator; then there

exists k £ M(X2 x Xj)  such that  T is an integral operator, T = [k]  and 0

< k if and only if

(1) T: X —♦ M(X )  is (0).continuous,

(2) for each  j there is a lift  T . of T on  Loo(x.)  that is positive, lin-

ear and order continuous.

Proof.   Let  T = [k] be a positive linear integral operator with kernel

0 < k.   By [2, p. 215], it is sufficient to show that if /    £ i.  and  0 < /   {0,

then  0 < Tif ) j.0, to obtain order continuity for  T,   This follows easily from

the Lebesgue dominated convergence theorem.   To verify (2) let  kQ  be a

specific kernel:   kQ £ k C\ M(X    x X.)  such that 0 < kjx, y)  for every  ix, y)

£ X2 x Xj.   For each  /', fkjx, y)yix .)iy) dy < «>  except for x € A. where

ujA .) = 0.   Now take  kjx, y) = k Jx, y) for  ix, y) £ LM • x Xj   and define

kjx, y) = 0  for (x, y) £ {JA . xXj.   Thus  k ,   and  kQ  differ on a set of p2

x pr  measure zero.   If / £  L^ix.), then for some 0 < c we have   |/| < c\ix).

Consequently,

\jkjx, y)/(yVy| < J^,U, y) • cXix)iy)dy < 0=

for all  x £ X_.    For   / £   L„(x.), define

fj{f)=fhjx,y)flv)<h\

then  T.  is a lift of  T  on  L    (x.).   It is obvious that   i .  is positive and lin-} °°    j j       r

ear.   If /    £ L^Gc.), 0 < f   [0, then a simple application of Lebesgue's

dominated convergence theorem shows that 0 < T.(/ )(x) j 0  for all  x and

T.  is order continuous.

Now let us suppose that  T: X. —» MiXJ is a positive, linear and order

continuous map that satisfies (2).   We shall construct the integral represen-

tation for T by viewing   "T.(  )(x)"  as a measure on the relativized space

(A ., ttj O X., ^tj)  and applying the Radon-Nikodym theorem.   Let Ct. =

\E (XX : E € Qj and x € X2  be fixed, then define for  E € Q., itx .iE) =

T .i(xiE)))ix)■   The finite additivity of p.x. follows from the linearity of  T.,

and the nonnegativity of px .  comes from the positivity of  T..   Let  (E .) be

a countable disjoint sequence from  U.; then  x(U°li^-) - x(U"-l^'■* = /

and 0 < /   j 0.   Since   T.  is order continuous, 0 < f .(/ )(x) I 0  for all x £ X„.
—   77 j —     ; 1 n *■ 2

Consequently, limn^00nxJ\J^E ) _ ^"=lpxjE) =0: p.x. is countably additive.
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Now if  F £  Cl.  is a  pj   null set, then

f .((x(E)))(x) = f(2(X(E)))(x) = 2T((y(E)))(x)

for all  x £  \ 2, so  T ,(\x(£)))(x) = 0  for all  x £ X2  and  px .  is absolutely

continuous with respect to  p..   Let  &. ,(x, y) be the Radon-Nikodym deriva-

tive of px . with respect to  pj.   Clearly 0 < k Ax, y)  for all  x and y.   Since

(Xj, Ctj, fXj)  is separable, it follows by [5, p. 616], that  k.(x, y) is  Cl2 x Ctj

measurable.

For  L £ Ct,  we have  px (E) = fkAx, y)\(F)(y) dy.   Thus for any simple

function  r=S".c.v(F.)  where   \E .j"  ,   are disjoint and  E .C X.,

n n

f.((r))(x) = £c.T.«x(F.)»(x) =JCft.(E.) =/*.(x, y)r(yWy
i=l i=l ;

for all  x £ X2.   Thus

T(r) - xfi ofk.(x, y)r(y)dy

for any simple function   r vanishing outside  X

Now let 0 < f £ x  and / vanish off of  X.; then there exists a sequence

(f   ) of simple functions such that  0 < f   ] f and  /    vanishes off of  X      So

T(f) = lim  T(f) = lim 6 o [k .(x, y)f (y)dy = xb ° (k .(x, y)f(y) dy.
n->oo b-»oo J     J " J     1

If we drop the distinction between equivalence classes and functions, we now

have for all  f £ X  that vanish off of  X. that  T(f) - fkAx, y)f(y) dy.   The

extension from nonnegative / to general   /, as usual, uses the decomposition

/ = /+ - /"   where  /+ = / V 0  and  /" = -/ V 0.

If we set  k = £°°,£.,   then   0 < k, and  k is  CL x (1,   measurable.   Since

k\(x ■ x.\',) = i,  k < oo, p2 x Pj   a.e.   Now let  0 < f £ X   and  / = ^"Ij/.

where 0 < f. = f-yixX   Since  0 < lf=1f. ] f,

OO OO

T(f) = y,T(f) = £)k.(x, y)f(y)dy
7=1 t=1

= £Jk(x, y)f(y)X(x)(y)dy =jk(x, y)f(y)dy.

7=1

The extension from nonnegative  / to general  / £ 1, as before, uses  / = /

In this paragraph we provide an example of a lift of a rather well-known

operator.   Let  (X, Cf, p) be the usual Lebesgue measure on the real line  X,

and let  L 2  be the square integrable functions defined on  X.   Clearly  L2  is

an ideal of M(X) having an admissible sequence.   An integral operator K:

L2 —> L 2, where   K = [k]  is of Hilbert-Schmidt class when  ff\k(x, y)\    dx dy

< oo;   see [8j.   Let us suppose 0 < k, and choose any specific representative
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kl  of k.   So  Ae,   is square integrable and there is a  p null set  A  such that

if x £/ A, then 0 < fkjx, y)fiy) dy < °°,   Now define  kjx, y) = k Ax, y) when

x 4 A and kjx, y) = 0  when x £ A.    Thus  /ej — &..   is  p x u null function

and  K = [(/en)].   We may now define a lift K of K on  L2  by  Kif)ix) =

fkjx, y)fiy) dy:   i.e. for all  / £ L2  and for all  x £  X, 0 < fkjx, y)fiy) dy
< oo.
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