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ALMOST DETERMINISTIC oj-AUTOMATA WITH

EXISTENTIAL OUTPUT CONDITION

MAREK KARPINSKI

ABSTRACT.   The theorem on reduction in the nondeterminateness de-

gree of (D-automata has been formulated.

1. Notation,   co denotes the set of natural numbers.   An ordinal will be

identified with the set of all its predecessors.   \A\  and   P(A) denote the

cardinality and the power set of A.   For a set A   and an ordinal   a,  denote

Aa to be the set of all  a-sequences over A, Aa = \v\v: a —» A\.  A* = U      A".

We shall write l(v) = n if v £ An.   If v% € A* v2 £ Aa (B C A *  C C A a) tot an

ordinal, then  v.v2 (BC) will denote the result of concatenating  fj  with  v2

(B  with  C).

For a function /: A —> B,  define

/«(/) = \b\b £ B,\f-Hb)\>co\.

2. <y-delinability.   We shall keep the terminology of [6].

A (nondeterministic) automaton over an alphabet   S is a quadruple 21 =

(S, M, S-, F) where  5 is a finite set, the set of states,  M is a function M: S x

2 —> P(S),  the transition function,   S   C S is the set of initial states, and F C S

is the set of final states.

The rank of  « is the least number ra   such that   \SQ\ < n  and  \m(s, o)\ <

re  for every  s e S,  tr e I    An automaton of rank 1 is called deterministic (d.).

An automaton   21 = (S, M, SQ, F)  is called limitary deterministic (1. d.) if

there is a d.  automaton  58 = ('/", N, TQ, G)  over  2 with  G = F and N C M.

Given  n < co.    An   %-run   on  » tl"   is a function  r; ra + 1 —•  S  such that

r(0) £SQ  and r(i + l) 6 M(r(0, v(i)\ i < n.

An  U-run on  f e 2" is a function  r: w —' S   satisfying the above for any

z < co.

A word v £ 2", ra < co, is accepted by 21 if there is an 2I-run on v such

that r(n) £ F. The set of all words v £ 2* accepted by 21 will be denoted

by   L(2I).    A set  AC 2* is called regular if for some automaton   21, L(2I) = A.

Proceeding to ru-sequences, we introduce two different output conditions

attached to two different notions of finite automata.   And so with the automaton
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U-(S, M, SQ, F)   we associate,   following J. R. Buchi [l], the existential

rule of uj-definability:

21 defines  v 6 1W iff there is an  2I-run on  v  such that  Inir) C\ F /= 0.

The set of all  v e 1W defined by   ?l will be denoted by  £(21).   A set

A C 2" is existentially definable (ED) if for some automaton  21, E(2I) = A.

A C z    is  ED of rank n if there is an automaton  21 of rank n such that

E(2I) = A.    An  ED  set of rank 1 will be called deterministic  (d.).

The second notion of the finite acceptor is due to D. Muller [4].

A Muller automaton over I is a system 21= (S, M, s., F) where S is

a finite set, M:Sx 5 ' S, s. e S, and F C PiS) is the set of designated

subsets of S.

The Muller (universal) rule of co-definability states:

21 defines v € 2.w iff there is a function   r: oj —» 5   satisfying   r(0) = s ,

r(i + l) = Mirii), vii)), i < co,   and such that   Inir) e F.

The set of all co-sequences defined in such a manner will be denoted

by (7(21). A set A C 1W is called universally definable (UD) if for some

Muller automaton  21, 1/(21) = A.

By the fundamental result of McNaughton [3] we have

Theorem 1.   Given a set  A C S".   A   is  ED  if and only if A   is  UD.

3.   Rank and limitary determinism of ED  setSa   It is trivially verifiable

that there are  ED  sets which are not of rank 1.   This fact naturally raises

the question of the possible reductions in the degree of nondeterminateness

of such sets.   In answer to this we have

Theorem 2. For every automaton 21 there exists a l.d. automaton ®

of rank  2   such that E(8) = E(?l).

Proof.   Let ?I = (S, M, sQ, F) be a Muller automaton with  F - iA .J.    .

Construct the set T = {(an, .... an_Js\a   e PiAj or a.=p,s eS\ p 4 P(S),

and the function N: T x 2 —' T  by

N((a0.an_As, a) = [(b0, .... bn_l)M(s, a)\

and

b . = a . u \s\    if s e A . and a. /, A., a. 4 p,
ti i j        i<      j     p'

= 0 if s e A . and a . = A .,ia. / p),

= p otherwise.

Let us define the automaton  8 = (S U T, H, is0l, G) where H(s, ct) =

{(0,...., 0)s', s'l for s'= M(s, a),  s £ 5, r/|T x 2 = N  and  G =

i(a0, ... , a      As\a . = A . for some j en\.    S  is  l.d.  and of rank 2.

With the above, for any function v e1w the following occurences are equivalent:
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(1) There is a function r £ (S UT)ffi such that  r(i + l) e H(r(i), v(i)),

i < co,  and In(r) C\ G 4 0 •

(2) There is a function r £ Sw such that r(i + l) = M(r(i), v(i)), i < co,

and  In(r) £ F.

To display this, suppose that (1) is fulfilled.   From the construction

of the function  N  it follows that r (i + l) = M(r  (i), v(i)),  where  r  (i) = s

if r(i) = s or r(i) = (aQ, . . ., an_1)s.   If (aQ, . .., a^_ ^ e nAln(r)n G), with

tt.   the   1st  projection, then there is an index /' such that  a.- A. £ F and

a., C A. or  a , = p for /' 4- j. Suppose now that there is a second (AQ.A     ,)

6 77j(/ra(r) DG) with a. 4 b.   tot some   / era.   This implies immediately that

(a , .... a   _ ,) 4 TrAlnir) C\ G),  a contradiction.   So it must be exactly  Inir )

= A ..   On the other hand, let (2) be satisfied with  ln(r) = A . £ F.    There is

an integer k such that r(i) £ A .  for i > k.   Construct the function r" £ (S uT)"

by  r'\k = r\k,

r'ik) = (0, • • • , 0)M(r(k - 1), t/U - D)

and

r'U + 1 + z) = /7((0, . . . , 0)M(rU - l), tA> - 1)), v AD)

tor v Ai): i + 1 —♦ 2 defined by  v Ai') = f U + /') and W being the sequential

extension of H.   For i >k  we have r (i) - (a , .... a  __ ,)s  provided a. C A ..

Here again by the second part of (2) we have   (a , .... a   _,) with  a. = A .

belonging to  nAln(r')).

The above entails the identity  E(B) = (7(21),  and thus, by Theorem 1,

our thesis follows.

Now let  21 = (S, AI, .V , F)  be a  l.d.  automaton over  -.   Define the  au-

tomata 2l1(s,)=(S'i  M, S0, is]), s  £ F.    There exist  d.   automata  2l2(s) = (T, N,

\s\, F), s £F, over  2  with  N C M.   We have  F(»l) = \Jsgp L(2Ij(s))E(2I2(s))l

Since the regular sets concatenated with   ED  sets are  again   ED  sets

and  ED sets are closed under the union,  Theorem 2  will yield the following

expansion result.

Theorem 3.   Given a set  A C 2^.   A   is  ED  if and only if there are

regular sets  B.C S*   and d.   ED  sets  C. C 2^   i < n < co,   satisfying the

identity  A - M       B C ..
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