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SOLUTIONS OF LINEAR DIFFERENTIAL
EQUATIONS

IN FUNCTION FIELDS OF ONE VARIABLE

MICHAEL F. SINGER

Abstract. Formal power series techniques are used to investigate the

algebraic relationships between a function satisfying a linear differential

equation and its derivatives. We are able to derive some conclusions, among

them that an elliptic function satisfies no linear differential equation over a

liouvillian extension of the complex numbers.

In [3], Rosenlicht noticed that if an element y belonged to a liouvillian

extension of a differential field, then the zeroes and poles of it and its

derivatives must satisfy certain relations. His main tool was

Theorem. Let K be a field of characteristic zero, k a subfield of K, Pa real

discrete k-place of K whose residue field is algebraic over k, D a derivation of K

that is continuous in the topology of P and that maps k into itself. Let x, y be

nonzero elements of Ksuch that each o/x(A), y(P) is either 0 or oo. Then:

(1) If ordP(Dx/x) is 0, then ovdP(Dy/y) is 0. Here D induces a derivation on

the residue field of P. Denoting this residue field derivation by the same symbol D,

for any z in K such that ordPz =g 0, we have (Dz)(P) = D(z(P)).

(2) If ordpiDx/x) < 0, then ordPiDx/x) = ovdPiDy/y) and, therefore,

oxdpiy/x) = ordpiDy/Dx). In addition, (y/x)(P) = iDy/Dx)(P).

Using this fact, he was able to show that certain differential equations have

no liouvillian solutions. In this paper, we will show that the poles and zeroes

of a solution of a linear differential equation and its derivatives must satisfy

certain relations. With this we are able to mimic Rosenlicht's results and show

that solutions of a large class of differential equations satisfy no linear

differential equation (Corollaries 1 and 2). We will also prove a strengthened

version of results of C. L. Siegel [5, p. 60] and L. Goldman [1, Corollary 3] and

give an easy proof of a structure theorem of L. Goldman [1, Corollary 4].

The main tool of this paper is

Lemma. Let k E K be differential fields of characteristic 0. Let w £ K satisfy

the linear differential equation

wW - A„_x w("-l) --A0w = A

with the At, B in k. Let P be a discrete k-place of k(w} such that the derivation

' is continuous in the topology of this place. Then ord^vv < 0 implies that

ordpiw'/w) g 0.
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Proof. Assume not; then ordP(w'/w) < 0 and so ordPw' < 0. Case 2 of

the theorem now applies. We can conclude that ordP(w"/w') = ordP(w'/w)

< 0 and ord^w" < 0. Similarly ordP(w{k)/w{k-x)) < 0 and oxdPw{k) < 0,

and, in particular, ordP(w^"'/w^"~x') < O.Using our linear equation, we have

H-W/f'""" = P/w("_1) + A„_x + An_2win-2yw{"-x) + ■■■ + A0w/w("~x).

I claim that the right-hand side of this equation has order 0, which would give

us  a  contradiction,  and  thus  prove  the  lemma.   First  note  that  since

ordP(w{n-2)/w["-x)) > 0 and ordP(w^-^/w("-^) > 0,

we have ordn(w^I_3y>v''1_l') > 0. Continuing in this way, we see that

ord^^-'Vw'""0) > 0 for 2 g / £ n - 1. Also since ordPw{"-x) < 0,

ordP(B/w^n~x)) > 0. Therefore, the order of the right-hand side of the above

equation is 0.

Corollary 1. Let k C K be differential fields of characteristic 0 and y G K.

Let f be a polynomial in several variables over k of total degree less than n, some

positive integer, and y" = f(y,y',y",.. ■)■ Assume further that the transcendence

degree of /c(y> over k is 1. Then y satisfies no linear differential equation with

coefficients in k.

Proof. Note that the transcendence degree assumption allows us to assume

that the derivation is continuous in the topology of every A:-plane [4, Lemma

1]. Assume thaty did satisfy such an equation. By the lemma, we would then

have ordP(y'/y) g 0, where P is a pole of y. This, in turn, implies that

ordPy-m> =£ min (0, ord^y) for all m. Since ordPy < 0, we have

ordPf(y,y',y",...) g (n - l)ordPy > n(ordPy)) = ordPy",

which is a contradiction.

Corollary 2. An elliptic function satisfies no linear differential equation with

coefficients in a liouvillian extension of the complex numbers.

Proof. Let k be a liouvillian extension of the complex numbers and y an

elliptic function. Since y satisfies the differential equation (/) = y3 + ay

+ b, for some a, b G C, a3/27 + b2/A ¥= 0, we could apply Corollary 1, once

we know that the transcendence degree of k(y} over k is 1. By looking at the

above differential equation, we know it is at most 1. If it were less, then y

would lie in a liouvillian extension of the complex numbers, contradicting the

results on p. 372 of [3].

A homogeneous linear differential polynomial L(W), with coefficients in k,

is said to be linearly reducible over k if there exist homogeneous linear

differential polynomials M(W), N(W), each of positive order, with coeffi-

cients in k, such that L(W) = M(N(W)). If L(W) is not linearly reducible

over k, it is said to be irreducible over k. We will need the following fact

relating the reducibility of L(W) to the behavior of its solutions under

isomorphisms. Let U be a universal extension of k with constant field C [2, p.

133], and x a nonzero element of U such that P(x) = 0. Let 5 be the set of

differential ^-isomorphisms of k(x) into U, r the dimension of P, the C-span of
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[ox\o £ A} over C, and n the order of LiW). I claim that there exist

homogeneous linear differential polynomials Ln_riW) and LriW), of order

n — r and r, with coefficients in k, such that LiW) = Ln_riLriW)).

To see this, we can assume that r is less than n, and let ox x, o2x, ..., orx

be a C-basis of A and LriW) = Wr(W,oxx,.. . ,arx)/Wr(a,x,... ,orx),

where Wr(_V],... ,ym) is the Wronskian determinant. Any isomorphism of

k((jxx,..., arx} into U sends each atx into T and so leaves the coefficients of

LriW) fixed. By the corollary on p. 388 of [2], the coefficients of LriW) must

be in k. Let vx = ox x, v2 = a2x, ..., vr = orx, vr+x, ..., v„ be a fundamen-

tal system of solutions of L(W) in U. Every differential /c-isomorphism of

k(Lrivr+x),... , A,(i/„)> into U sends each A(i;+() into the C-span of L(fr+1),

..., Livn) and so leaves the coefficients of

Ln_riW) = WriW,Livr+x),...,Livn))/miLivr+x),...,Livn))

fixed. Therefore, Ln_riW) also has its coefficients in k. Since the coefficient of

W(n) in both LiW) and Ln_riLriW)) is 1, LiW) - Ln_riLriW)) is a

homogeneous linear differential polynomial of order less than n, with n

linearly independent solutions. Therefore LiW) = Ln_riLriW)). In particu-

lar, if LiW) is irreducible it has a fundamental set of solutions of the form

x, ox x, ..., on_x x, where x is any nonzero solution and the a, 's are differential

/c-isomorphisms of /c<x) into U.

Corollary 3. Let k E K be differential fields of characteristic 0 and w £ A

which satisfies the linear differential equation LiW) = A, where LiW) = W^"'

— An_x W^n~x' — ■ ■ ■ — A0W and the Ai and B are in k. If the transcendence

degree of k(w)> over k equals 1, then the homogeneous equation L{W) = 0 has a

solution u such that u'/u is algebraic over k. If Li W) is irreducible over k, then

LiW) = 0 has a fundamental set of solutions ux, .. . ,un such that each u'Juj is

algebraic over k.

Proof. The second assertion follows from the first and the remark at the

end of the preceding paragraph.

To prove the first assertion, let A be a pole of w. By the lemma, we have

ordpiw'/w) ^ 0. Using case 1 of the Theorem, and observing that w' = w'w/w,

w" = Hw'/w)' + iw'/w) )w,

w'" = Hw'/w)" + 3iw'/w)'w'/w + iw'/w) )w, ...,

>) = Hw'/wf"-X) + niw'/w)"'2w'/w + ■ ■ ■ + iw'/w)")w,

we see that iw'/w) (A) is an algebraic solution of the equation

J/(«-D + ny("-2) + ... +  yn _ Al(y(n-2) + . . . +  yn-\}-^

= iB/w)iP) = 0.

We can now find a u in some differential extension field of rc((w'/w)(A)) such

that u'/u = (w'/w)(A). This u will then satisfy the homogeneous linear

differential equation LiW) = 0.
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Corollary 4. Let k C K be differential fields of characteristic 0 and z G K

a solution of a linear differential equation with coefficients in k. Assume that the

transcendence degree of k <(z) over k is less than or equal to 1. Letting k be the

algebraic closure of k, we can then find a v in &<z) such that z is algebraic over

k (jv) and v satisfies a linear differential equation of order 1 over k.

Proof. If the transcendence degree of k(z} over k is zero, we are done.

Assume z is transcendental over k. Let v be an element of k{z}, transcendental

over k, which satisfies a linear differential equation over k of least order r,

which we may assume is bigger than 1. Let L(V) = B be a linear differential

equation of order r that v satisfies. By Corollary 3 we know that L(V) = 0 has

a solution u such that u'/u is in k. Letting S be the set of differential

k -isomorphisms of k(u) into the universal domain U, the dimension of the C-

span of {au\o G S) is 1. Using the paragraph preceding Corollary 3, we can

conclude that L(V) = Pr_,(P|(K)), where Lr_x(V) and LX(V) are homoge-

neous linear differential polynomials of order r — 1 and 1, with coefficients in

k. Lx(v) is in k(z} and satisfies Lr_x(V) = B, a linear differential equation of

order less than r. Therefore, Lx(v) must be in k and v satisfies a linear

differential equation of order 1 over k, a contradiction. Therefore, r—1.

Both Corollary 4 and a weaker form of Corollary 3 were proven by L.

Goldman [1] using the theory of differential polynomials and, in particular, the

leading coefficient theorem of Ritt, which we have avoided.
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