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A REFINEMENT OF GREEN'S THEOREM ON
THE DEFECT GROUP OF A p -BLOCK

T. Y. LAM1

Abstract. Let D be the defect group of a p-block of a finite group G. Let

P, Q be two /i-Sylow groups of G containing D. Then there exist x, y, z

E CG(z) such that: (i) z isp-regular and D is a^-Sylow group of CG(z); (ii)

D = QxnP=Qn Py; and (iii) z = xy. This refines an earlier theorem

of J. A. Green.

Let D be the defect group of a /?-block of a finite group G. If P is a ^-Sylow

group of G containing D, it has been known for some time that there must

exist another /7-Sylow group Q such that P f) Q = D. This so-called 'Sylow

intersection' property was first established by Green [2] using vertex theory,

and later also proved by Thompson [4] using Brauer's methods. In [1, p. 241]

Alperin indicated that D can even be expressed as a tame intersection of two

suitable /J-Sylow groups of G.

In 1968, a much more accurate result was obtained by Green [3]. If P is any

given /?-Sylow group of G containing D, Green proved that there must exist

x, y, z G CG(D) such that (i) z is ̂ -regular and D is a/7-Sylow group of CG(z);

(ii) D = PDPX = PC\ Py; (iii) z = xy. In particular, if P is chosen such

that NP(D) is a />-Sylow group of NG(D), then D = P n Px in (ii) clearly

expresses D as a tame Sylow intersection. On the other hand, the conclusion

of (i) recaptures the earlier result of Brauer that D must be a class-defect group

of some ^-regular conjugacy class in G.

Green's proof of the above result is a rather elaborate (but extremely

successful) application of vertex theory, in the more general framework of G-

algebras [3]. For D a sufficiently large p-adic ring (p\p), Green views the

integral group ring T = £)G as a (left) G X (7-algebra via the action (gx,g2) • y

= gx yg2x (gt G G, y G T). Let E G T be the p-adic idempotent associated

with the given /j-block, whose defect group is D. Given a /7-Sylow group

P D D, the following steps are important ingredients in Green's proof:

(1) The vertex of the indecomposable D(GX G)-module T ■ E is A(D)

= {(d,d): d G D).

(2) When viewed as £)(P X P )-module by restriction, T ■ E has at least one

indecomposable constituent with vertex = A(Z>) C P X P.

(3) Let UwGfVPwP be the (P.P)-double coset decomposition of G, and let

[PwP] denote the £)(P X P )-submodule of T, with PwP as D-basis. Then,
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F = ©wErrlA^A] is a Krull-Schmidt decomposition of T in the category of

£>(A X A)-modules. The vertex of [PwP] is A(w) = {ipx,p2) E P X A^wpJ1

= w}. Thus, by (2), at least one such A(w) must be conjugate in P X P to A(D).

We may assume A(Z>) = A(vv(), and let [wx,... ,wc) be a maximal subset of

PF such that Piwj) (1 < 7 < c) are mutually nonconjugate in P X P. Since

Pi.P\X wPi) = P(w) , we may assume H7 to have been so chosen that each

P(w) (w E W) is actually equal (not just conjugate) to some (unique) P(w:).

(4) The endomorphism algebra End^x/> T, modulo its radical, can be

explicitly determined, in the form II/-1 Mm.(£)/p), a product of matrix

algebras over the modular field £)/p. To be precise, the matrices in the jih

factor have rows and columns suffixed by VV = [w E JF •• A(w) = A(w,)},

and so w = |W|.

(5) By left multiplication, the center of T acts as G X G- (hence P X P-)

endomorphisms on T. Using the projections End^x^ T -» Mm.(£)/p) in (4),

one obtains a family of 'representations' ^ : Center T -* Mm.(£)/p). If $ is a

typical conjugacy class in G, and A is its class sum in T, then ^(A) will be a

matrix whose (w,i/)-entry (u,v E W) is the cardinality of the following set

(taken mod p):

FJvi®;P) = {x E AwA : A(x) = P(Wj) and xiT1 E R}.

(6) On the other hand, ^ sends the given p-adic idempotent A to a matrix

^(A) whose rank happens to be the number of indecomposable constituents

of (r • E)PxP with vertex conjugate in P X P to A(vv,).

The proofs of the above facts vary in degree of difficulty; taken together,

they provide an extremely useful tool with which to study the defect group D.

In the following, we shall show how the above information can be further

strengthened. Namely, instead of working with o«e/?-Sylow group P D D, one

could work simultaneously with two given />-Sylow groups P D D, Q D D. By

recasting Green's original methods, we shall show that the following refine-

ment of Green's theorem holds:

Theorem . Let D be the defect group of a p-block of the finite group G. Let

P, Q be two p-Sylow groups of G containing D. Then there exist x, y, z E CG(£>)

such that: (i) z is p-regular and D is a p-Sylow group of CGiz); (ii) D = Qx n P

= Q n Py, and (iii) z = xy.

To establish this, it is essential to extend the facts (1) through (6) above to

cope with the situation of two /j-Sylow groups. The point is that, because of

the way the G X G action on T is defined, it is just as easy (and obviously more

effective) to study the restriction of T and T • E to the subgroup Qx P

E G X G. Fact (1) remains, of course, unchanged. For (2), we now have

A(Z>) C Qx P, and, by Green's theory, the restriction (r ■ E)qxP still has at

least one indecomposable constituent with vertex = A(D). For (3), we must

now let W be a full set of (Q, A)-double coset representatives in G (instead of

(A, A)-coset representatives). Notice that Qx P is a p-group, and [£HvA] (with

the obvious definition) is a transitive permutation module over Q X P. By an
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earlier theorem of Green [2, Lemma 2.3a], [QwP] is still £>(Q X P)-indecompo-

sable. Hence, T = ®wf=wlQwP] remains a Krull-Schmidt decomposition in

the category of £>(Q X P)-modules. For x G G, let J(x) = {(a,b) G QxP:

axb~x = x), the subgroup of Q X P fixing x. (Green's P(x,y) in [3, p. 145]

should be correspondingly changed into a more general J(x,y), but we still

have J(x,y) = J(x) n J(y), ..., etc.) Letting {wx,..., wc) be a maximal

subset of If such that J(yv) are mutually nonconjugate in QX P, we may

assume, by what we said so far, that A(D) = J(wx). Again, W may be

'normalized' so that each J(w) (w G W) equals some (unique) J(wj).

The endomorphism algebra Endgx/> T, modulo its radical, can be calculat-

ed along essentially the same lines as in [3], with minor notational changes.

The quotient breaks up into a product IIj=i Mm.(£)/p), where the matrices in

they'th factor are suffixed by the set W} = {w G W: J(w) = J(wj) C QxP).

By a procedure similar to that used in (5), one obtains again the represen-

tations ^j. For the class sum K of any conjugacy class ®, one can show that

%(K) is evaluated as before, after replacing the old Fjv(sl;P) by new sets:

Fjv(®; Q,P) = {x G QuP: J(x) = J(Wj) and xv~x G H)       (u,v G Wj).

Finally, the new version of (6), proved by rather routine changes of Green's

methods, now states that ^(P) has rank equal to the number of indecompo-

sable constituents of (r • E)qxP with vertex conjugate in Q X P to J(wj).

Having said all the above, the proof of the Theorem now proceeds as

follows (cf. [3, p. 149]). Let S, (1 < / < n) be the conjugacy classes of G, with

sums K0 and let E = 2" a(Kt. Since A(D) = J(wx), the new versions of (2)

and (6) imply that %(E) has rank > 1. We have 0 # %(E) = 2, ai%(Ki)

('bar' denotes mod p), so there must exist a class % for which ah ¥= 0 and

%(Kh) ¥= 0. The former implies (as is well known) that % is /^-regular, and

the latter implies, thanks to the new version of (5), that the sets F,}v($ih;Q,P)

cannot be all empty for u, v G Wx. Choose u,vGWx for which there exists

x G Fxv(®h;Q,P). We have then J(x) = J(v) = J(wx) = A(Z>). But J(x)
= {(a,b) G QXP ■ ax = b). Thus, J(x) = A(D) implies that D = Qx D P
and x G CG(D). Similarly, we obtain D = Qv f) P and v G CG(D). Setting

y = v~x G CG(D), we have D = Q n Py. The element z = xy = xv~x

G % is, therefore, ^-regular, and its class-defect group contains D. But then

D must actually equal the class-defect group of %.   Q.E.D.

Finally, from the Theorem just proved, we may record the following

generalization of the 'tame-Sylow-intersection' property:

Corollary . Let D be the defect group of ap-block of the finite group G, and

let P be any p-Sylow group of G containing D. Then there exists a p-Sylow group

S of G such that D = S n P, and NS(D) is a p-Sylow subgroup of NG(D).

Proof. Choose a ^-Sylow group Q D D such that NQ(D) is a ^-Sylow

group of NG(D). There exists, by the Theorem, x G CG(D) such that

D = Qx n P. The new /?-Sylow group S = Qx clearly has the desired

properties.    Q.E.D.
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