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A PROPERTY OF GROUPS OF
NONEXPONENTIAL GROWTH

SHMUEL ROSSET

Abstract. We prove that in a finitely generated nonexponential group a

normal subgroup with a solvable quotient is finitely generated. This extends

a theorem of Milnor which has the same conclusion if the group is also

assumed to be solvable. The proof uses a lemma of Milnor, but in a different,

simpler, way.

We prove a theorem which is an extension of a result of J. Milnor.

Theorem. // G is a finitely generated group which does not grow exponentially

and H is a normal subgroup such that G/H is solvable, then H is finitely

generated.

The basic tool is recorded in §2 as 'Milnor's lemma', and it shows that

finitely generated nonexponential groups have a certain property. Indeed the

Theorem above could be stated for groups having this property.

Milnor stated the lemma in [3] and used it to prove that a finitely generated,

nonexponential solvable group is polycyclic. This is equivalent, of course, to

G' = [G, G] being finitely generated, for then polycyclicity follows by induc-

tion on the derived length of G. The Theorem above extends Milnor's result

in that it shows that G' is finitely generated without the assumption that G is

solvable.

1. Definitions and background. If G is a finitely generated group, and

xx, x2, ..., xn generate it, the growth function of G, with respect to this set of

generators is defined to be

gis) = number of elements in G expressible as words of length

< ^ in the generators and their inverses .

The function g is said to have exponential growth if for some real numbers

c > 0, a > 1, gis) > c • as for every integer s > 1. Otherwise g is 'nonexpon-

ential'. If g is bounded by some polynomial of degree m we say that it grows

polynomially. Growth functions f(s), gis) are said to be equivalent if there

exist integers A, B > 0 such that, for every s > \,f(s) < g(As), gis) < f(Bs).

It is easy to see that all growth functions of G are equivalent, that equivalent

functions have the same type of growth and, in the case of polynomial growth,

that equivalent functions are bounded by polynomials of the same degree.

Thus growth type and degree are invariants of the group.
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Growth functions were first introduced by Milnor [2] in a geometric context.

Wolf [6] showed that finitely generated polycyclic groups are either exponen-

tial or have a nilpotent subgroup of finite index, and, therefore, polynomial

growth. A purely algebraic proof of this, using only Milnor's lemma, is in [1].

Milnor's [3] was intended to extend Wolf's result from 'polycyclic' to

'solvable'.

It is not known if there exist groups which are not exponential and not

polynomially growing. Wolf conjectured that polynomiality implies almost

solvability and Bass extended the conjecture to the nonexponential case. (A

group is 'almost P' if it has a P-subgroup of finite index.) A theorem of Tits

[5] affirms the conjecture for subgroups of linear groups.

2.    In this section we prove the Theorem and given some comments.

Lemma 1 (Milnor [3]). If G is a finitely generated nonexponential group, and

if x, y G G, then the group generated by the set of conjugates y, xyx~ ,

x yx   , ... is finitely generated.

Note that Milnor stated the lemma under the restriction that all the

conjugates commute, but his proof does not use this restriction. For the sake

of completeness (and reassurance) we repeat the proof: The number of words

xy'lxy'2x • ■ ■ xy'm, where each /• = 0 or 1, is 2m. G being nonexponential they

cannot all be distinct for all m. Let y, = x'yx~'. For the minimal m for which

some equality occur:

xy'1 xy'2 ■ • • xy'm = jcy7'1 xy-'2 ■ ■ ■ xy^m,        im ¥= jm.

So

y'iy'2 ■■■y'm = yJ\y2 ■■■ymm>

andym - im = ±1 implies thatym = W(yx,... ,ym-X). But then

ym+\ = W(y2,... ,ym) = W'(yx,... ,ym_,),

etc. and the proof is now clear.

The next lemma is the key to the whole proof and it uses the following well-

known fact: let A" be a generating set of a group G, H a subgroup and P a set

of representatives of the right cosets of H, with 1 G P. Then H is generated

by the set PAT"1 n H. See [4, p. 152] for a proof.

Lemma 2. Let G be a finitely generated group in which the conclusion of

Lemma 1 holds. Suppose HOG and G/H is infinitely cyclic. Then H is finitely
generated.

Proof. Let / be a generator of G/H. We can find a generating set

[xx,x2,... ,xk) = A such that xx maps into t and x2, ..., xk G H. Indeed, if

Xj maps onto tm>, we can modify it by a power of xx, xf"'x,-, and xx, x, generate

the same group as xx, xf"'x(. We take for a set of representatives the cyclic

subgroup generated by x,. Then

x{x/x/ = xjx/xf'xj"1"7 G H «=> (' + j = 0,
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that is, H is generated by all the conjugates of x2, x3, ..., xk by xx. Milnor's

lemma now implies that H is finitely generated.

Lemma 3. G as in Lemma 2, H t> G and G/H abelian. Then H is finitely

generated.

Proof. Write G/H as a direct sum of a torsion free part and the torsion.

The inverse image of the torsion free part has finite index in G, so is finitely

generated, and, modulo H, is torsion free. So we can assume that G/H = F is

free abelian. If rank F — 1, this is Lemma 2. Assume the lemma for rank F

< n in > 1). If rank F = n, write F = A + B, where A has rank n — 1 and

B rank 1. The inverse image of A is finitely generated by Lemma 2, and the

finite generation of H now follows from the inductive assumption.

Corollary 1.    G as above. Then G' is finitely generated.

Corollary 2.    // G is also assumed solvable, then G is polycyclic.

Recall that a group is polycyclic if it is solvable and all its derived subgroups

are finitely generated.

We can now complete the proof of the Theorem: use induction on the

derived length of G/H. If the derived length of G/H is 1, G/H is abelian and

this is Lemma 3. Assuming the result for derived length n — 1, let L be the

inverse image of [G/H, G/H] in G. L is finitely generated by Lemma 3 and

L/H has derived length n — 1. The Theorem follows.

As for the problem mentioned at the end of §1, we can use a statement of

Bass [1] to give a positive answer in a very special case. In the derived series,

if (G'"' : G'n+I') < oo, we say that it is a finite step. Bass shows that if G has

polynomial growth of degree d and if H0 <//]<•••< Hn are finitely

generated and (fl, •• Hf_x) = oo for 1 < / < «, then n < d. Since we have

proved that all the derived groups are finitely generated, we deduce that the

number of nonfinite steps in the derived series is finite. In particular, if the

growth is polynomial and all steps are known to be infinite, it follows that G

is solvable.

I do not know of any example of a nonexponential group with a properly

descending derived series such that 1 < (G'"' : G^"+l') < oo at every step. A

simple example of a group with polynomial growth such that (G = G') < oo is

the free product Z2 * Z2 which grows linearly but Gab is of order 4.
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