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CERTAIN MULTIPLE VALUED HARMONIC FUNCTION

L. A. CAFFARELLI1

Abstract.   The difference equation v(x+) - v(x) = u(x) is solved for any

harmonic u in the covering space of an unknotted curve.

The purpose of this note is to answer a problem posed by H. Lewy [2]. The

situation is as follows: Given is a curve T diffeomorphic, in R3, to a circle.

That is, we have a diffeomorphism (p: R3 —» R3 that maps T onto a circle C.

If we now consider the universal covering space S, of R3 ~ T, it is asked if

given a function u, harmonic on S, we can find a harmonic function v, such

that vix+) — vix) = u(x) (where x+ denotes the point obtained from x in S

following a path 8 whose projection 77(5) in R3 ~ T is a closed curve that

loops T once). We are going to prove that such a function v exists.

Proof. The proof is a modification of the proof in [2], to make an integral

convergent.

More precisely, let us consider, as in [2], the disk D in R3 that has C as

boundary and let o = (p~](D). We will consider neighborhoods U„ of T,

(1) U„ = {x:d(x,T)^2-"}.

By means of the diffeomorphism, for n0 large enough we can construct a

continuous mapping xix): U„ -* T such that

(2) \x(x) - x\ S Kdix,T)        iK a constant).

Bx will denote a ball verifying ({/0 U a) c Bx.

Let us consider now the two consecutive leaves Sx, S2of S that are between

the copies a0 and o2 of a on S and have the copy ox as common boundary.

Then, in the compact set

Wn = [iSx U S2)n 77-1(A1)]~7r-1t/„

there exists a A„ such that

(3) |k|=Sa„.

(As before it denotes the canonical projection 77: S —> R3 ~ T.) Any first

derivative of u is therefore bounded in Wn by some A„'. Let
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(4) \ = max(A„,A„').

We are going to consider the function

(5) +2    f Uy)^-(V - Vk)(x,y)
k = n0Jon(Uk~Uk+l) \ 0vy

-(V- Vk)(x,y)^u(y))do(y)

where V(x,y) = l/\x — y\ and Vk is a suitable Taylor's polynomial of V

around the point y (as defined in (2)). The values of u are taken over the copy

ctj of a, bounding Sx from S2- Let us then recall the following developments:

(6) '    _    '    (5«„W(]£^|Y)
|x-y|       |x-y0lVo \\x-y0\J J

convergent for |y - y0| < |x - y0|, supi .<, \P„(u)\ = 1 with 9 the angle be-

tween x — y0 and y — yo •

(7)
. /l^-yolV"2

\\x -y0l/

with w = cos 0 again convergent for \y - y0\ < |x - y0|, supi !<, |PJ,(w)|

g «(« + l)/2.
Each term of (6) and (7) is a harmonic polynomial (see [1, pp. 124 and 142]).

Turning back to (5) we choose Vk to be the development (6) with y0 = y(y)

up to an order l,k\ verifying

(8) Xk2~'^2 < 2~k.

Then if x G Um U a, and P(x) is a ball centered at x with P(x) n (Pm U ox)

= 0, fory G £4, with & g max[K(m + 1), n0], we have, for any x' G B(x),

/-9-/(fe)/2 .

(9) (K - Vk)(x', y) < -^- < C2m2  '(*>
k \x -y\

and

(10) |V(K- Vk)\(x',y) ̂  23mC/(2fc)2~'<*> S C'2~W

where C and C denote constants. Hence, the first max[A"(w + 1), «0] terms of

(5) are bounded harmonic functions on B, and the remaining terms give us, on

B, an absolutely and uniformly convergent series of harmonic functions. Now,

if B is a small ball intersecting o (with B n T = 0), and we remove from (5)

the integral
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(which involves only a finite number of terms of (5)), the remaining terms give

us again an absolutely and uniformly convergent series of harmonic functions

in any closed subball of A. But as in [2], (11) gives us the desired jump in w(x)

of the function v across a, and that completes the proof.
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