CERTAIN MULTIPLE VALUED HARMONIC FUNCTION

L. A. CAFFARELLI¹

ABSTRACT. The difference equation $v(x^+) - v(x) = u(x)$ is solved for any harmonic u in the covering space of an unknotted curve.

The purpose of this note is to answer a problem posed by H. Lewy [2]. The situation is as follows: Given is a curve Γ diffeomorphic, in \mathbb{R}^3 , to a circle. That is, we have a diffeomorphism $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ that maps Γ onto a circle C.

If we now consider the universal covering space S, of $\mathbb{R}^3 \sim \Gamma$, it is asked if given a function u, harmonic on S, we can find a harmonic function v, such that $v(x^+) - v(x) = u(x)$ (where x^+ denotes the point obtained from x in S following a path δ whose projection $\pi(\delta)$ in $\mathbb{R}^3 \sim \Gamma$ is a closed curve that loops Γ once). We are going to prove that such a function v exists.

PROOF. The proof is a modification of the proof in [2], to make an integral convergent.

More precisely, let us consider, as in [2], the disk D in \mathbb{R}^3 that has C as boundary and let $\sigma = \varphi^{-1}(D)$. We will consider neighborhoods U_n of Γ ,

(1)
$$U_n = \{x : d(x, \Gamma) \le 2^{-n}\}.$$

By means of the diffeomorphism, for n_0 large enough we can construct a continuous mapping $\tilde{x}(x)$: $U_{n_0} \to \Gamma$ such that

(2)
$$|\tilde{x}(x) - x| \le Kd(x, \Gamma)$$
 (K a constant).

 B_1 will denote a ball verifying $(U_0 \cup \sigma) \subset B_1$.

Let us consider now the two consecutive leaves S_1 , S_2 of S that are between the copies σ_0 and σ_2 of σ on S and have the copy σ_1 as common boundary.

Then, in the compact set

$$W_n = [(S_1 \cup S_2) \cap \pi^{-1}(B_1)] \sim \pi^{-1} U_n$$

there exists a λ_n such that

$$|u| \le \lambda_n.$$

(As before π denotes the canonical projection $\pi: S \to \mathbb{R}^3 \sim \Gamma$.) Any first derivative of u is therefore bounded in W_n by some λ_n . Let

Received by the editors October 31, 1974 and, in revised form, January 12, 1975.

AMS (MOS) subject classifications (1970). Primary 31B05.

Key words and phrases. Harmonic function, covering space.

¹ Fellow of the Consejo Nacional de Investigaciones Cientificas y Tecnicas, Republica de Argentina.

$$\bar{\lambda}_n = \max(\lambda_n, \lambda_n').$$

We are going to consider the function

$$v(x) = \frac{1}{4\pi} \int_{\sigma \sim U_{n_0}} \left(u(y) \frac{\partial}{\partial \nu_y} V - V \frac{\partial}{\partial \nu_y} u(y) \right) d\sigma(y)$$

$$(5) \qquad + \sum_{k=n_0}^{\infty} \int_{\sigma \cap (U_k \sim U_{k+1})} \left(u(y) \frac{\partial}{\partial \nu_y} (V - V_k)(x, y) - (V - V_k)(x, y) \frac{\partial}{\partial \nu_y} u(y) \right) d\sigma(y)$$

where V(x,y) = 1/|x-y| and V_k is a suitable Taylor's polynomial of V around the point \tilde{y} (as defined in (2)). The values of u are taken over the copy σ_1 of σ , bounding S_1 from S_2 . Let us then recall the following developments:

(6)
$$\frac{1}{|x-y|} = \frac{1}{|x-y_0|} \left(\sum_{n=0}^{\infty} P_n(\cos \theta) \left(\frac{|y-y_0|}{|x-y_0|} \right)^n \right)$$

convergent for $|y - y_0| < |x - y_0|$, $\sup_{|u| \le 1} |P_n(u)| = 1$ with θ the angle between $x - y_0$ and $y - y_0$.

(7)
$$\nabla_{y} \frac{1}{|x-y|} = \frac{1}{|x-y_{0}|^{3}} \sum_{1}^{\infty} \left(P'_{n-1}(u)(y-y_{0}) - P'_{n}(u) \frac{|y-y_{0}|}{|x-y_{0}|} (x-y_{0}) \right) \cdot \left(\frac{|y-y_{0}|}{|x-y_{0}|} \right)^{n-2}$$

with $u = \cos \theta$ again convergent for $|y - y_0| < |x - y_0|$, $\sup_{|u| \le 1} |P'_n(u)| \le n(n+1)/2$.

Each term of (6) and (7) is a harmonic polynomial (see [1, pp. 124 and 142]). Turning back to (5) we choose V_k to be the development (6) with $v_0 = \tilde{y}(y)$ up to an order $l_{(k)}$ verifying

$$\bar{\lambda}_{k} \, 2^{-l_{(k)/2}} < 2^{-k}.$$

Then if $x \notin U_m \cup \sigma_1$ and B(x) is a ball centered at x with $\overline{B(x)} \cap (U_m \cup \sigma_1) = \emptyset$, for $y \in U_k$, with $k \ge \max[K(m+1), n_0]$, we have, for any $x' \in B(x)$,

(9)
$$(V - V_k)(x', y) \le \frac{C2^{-l(k)/2}}{|x' - \widetilde{\gamma}|} \le C2^m 2^{-l(k)}$$

and

(10)
$$|\nabla(V - V_k)|(x', y) \le 2^{3m} C l_{(k)}^2 2^{-l_{(k)}} \le C' 2^{-l_{(k)/2}}$$

where C and C' denote constants. Hence, the first $\max[K(m+1), n_0]$ terms of (5) are bounded harmonic functions on B, and the remaining terms give us, on B, an absolutely and uniformly convergent series of harmonic functions. Now, if B is a small ball intersecting σ (with $\overline{B} \cap \Gamma = \emptyset$), and we remove from (5) the integral

(11)
$$\frac{1}{4\pi} \int_{B \cap \sigma} \left(u(y) \frac{\partial}{\partial \nu_y} V(x, y) - V(x, y) \frac{\partial}{\partial \nu_y} u(y) \right) d\sigma$$

(which involves only a finite number of terms of (5)), the remaining terms give us again an absolutely and uniformly convergent series of harmonic functions in any closed subball of B. But as in [2], (11) gives us the desired jump in u(x) of the function v across σ , and that completes the proof.

REFERENCES

- 1. O. D. Kellogg, Foundations of potential theory, Dover, New York, 1953.
- 2. Hans Lewy, Generalization of a theorem on the spatial angle, Russian Math. Surveys 26 (1971), no. 2, 131-137.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455