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ON THE SYMMETRY OF MATRIX ALGEBRAS

JOSEF WICHMANN

Abstract. A *-algebra is called symmetric, if each element of the form

a* a has nonnegative real spectrum. The study of locally compact groups

with symmetric group algebras led to the following theorem: The tensoring

of a Banach *-algebra with the *-algebra of all complex zz x n matrices

preserves symmetry. In this note we prove, by a very simple algebraic

argument, an analogue of it for arbitrary '-algebras.

1. Introduction. The problem of determining which locally compact groups

have symmetric group algebras has received much attention. It often led to the

study of the question whether the tensor product of two symmetric Banach *-

algebras A and B is again symmetric [2], [1], [4], [5].

In the special case where B is the finite dimensional *-algebra Cn of all

complex n X n matrices the tensor product of A and B is the *-algebra An of

all n X n matrices over A with the usual algebraic operations and involution

(ay) = (a*). It was proved by H. Leptin [6] and the author [7] that if A is a

symmetric Banach *-algebra, then the matrix algebra An is also symmetric.

(As pointed out in [6] D. W. Bailey's proof [1] of the 2 X 2 case is incorrect.)

The purpose of this note is to prove, by a very simple algebraic argument,

the following more general result.

Theorem. Let A be a *-algebra and let n be a positive integer. Then A has the

property that each element of the form a* ax + • ■ ■ + a* ak, k = 1, 2, 3, ..., has

nonnegative real spectrum if and only if the * -algebra A„ of all n X n matrices

over A has the same property.

This answers a question of R. S. Doran [3].

2. Proof of the Theorem. Let A be an arbitrary *-algebra and let k and n

be positive integers. For convenience we say that A is zV-symmetric, if for every

set of k elements ax, ..., ak in A the element a*ax + • ■ ■ + a*ak has

nonnegative real spectrum. Clearly, for any *-algebra, A>symmetric implies

symmetric, i.e. 1-symmetric. It is well known that for Banach *-algebras the

converse holds.

2.1. Lemma. If A is k-symmetric, then the *-algebra Ae obtained from A by

adjunction of an identity element e is also k-symmetric.

If the *-algebra (Ae)n of all nXn matrices over Ae is k-symmetric, then the *-

algebra An of all nX n matrices over A is also k-symmetric.

Proof. Given a zt-tuple A = (A,,..., Xk) of complex scalars and a set of k
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elements ax, ..., ak in A, set

h = 2 CV + ar)*i\e + ar) - 2 l\|2e   and    |A|2 = 2 |Ar|2

(sums are taken over r = 1, ..., k). Since h is a Hermitian element in y4 we

can decompose the following element into commuting factors.

e + 2 KV + «,)0 + |a|2)~V[CV + «,)0 + I*!2)"1*]

= e + 2 K\ + |A|2)"'(Are + ar)*i\e + <3r)(l + |A|2)"'/z

= e + hil + lAl2)-1^ + |A|2e)(l + IA)2)-1/!

= (e + /i(l + |A|2)"'(/i - <?))(! + |A|2r'(^ + |A|2e + /j).

Thus, if ^ is A:-symmetric, then

e + \X\2e + h = e + 2 iXre + ar)*iKe + ar)

is invertible in Ae, i.e. ^e is zt-symmetric (see also [7]).

The assertion about An follows from the fact that An is a *-ideal in iAe)n.

The preceding lemma shows that we may assume without loss of generality

that A has an identity element e. We denote the identity matrix in A n by e„.

2.2. Remark. If An is zV-symmetric, then A is, in ■ /c)-symmetric. Indeed, if An

is ^-symmetric, then for the n X n matrices ar = iarij), with arij = 0 fory > 1,

the n X n matrix

,   v    * (e + 2 («*i arii + • • • + a*n l arnl)        °     \
en + 2 «r ar = I 1

\ 0 <?„_,/

is invertible in An. Thus e + 2 (a*iaHi + •• • + o*niarn\) is invertible in A,

i.e. A is in • /(/-symmetric. This proves one direction of the theorem.

2.3. Lemma. If A is (2/c + \)-symmetric, then the *-algebra A2 is k-symmetric.

Proof. Given k matrices ar = iarif), r = 1, ..., k, in A2, we have to show

that the matrix

e2 + 2 a* ar

= (e + 2 (o*i«rii +a*2xar2X) b \

V b* e + 2 ia*uaA2 + a*22ar22)J

is invertible in A2. Consider the invertible 2x2 matrix

x = (e ~(e + 2 (fl*H«rll  + a*2\ar2\))~X b\

and setyr = arx. Simple matrix multiplication shows that

x*ie2 + 2 a* ar)x = x*x + 2 y*yr

= /e? + 2 («*i«ril + a*2xar2X) 0 \

V o e + xf2xX2 + 2 iy*2yri2 + ymyrii)'
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is also invertible. Thus e2 + 2 a* arx% invertible in A2.

2.4. Proof of the Theorem. We have shown that the theorem holds for n =

2l. If we assume the theorem for n = 2m , then it follows for n = 2^m + 1^ from the

fact that the *-algebra of 2^m + i ̂  x 2^m + l * matrices over A is *-isomorphic to the

*-algebra of 2 x 2 matrices over A n by partitioning. Thus the theorem holds for

all n = 2m.

Now let n be an arbitrary positive integer. Choose a positive integer m such

that n < 2m. Then An is *-isomorphic to the *-subalgebra of all 2m X 2m

matrices over A of the form

(a 0     \
( _ I,    where a is in A„.
\U e(2"-n)/

The inverse of a matrix of this form, if it exists in A2„, is of the form

fa' 0    \
( ),    where a' is in An and a'a = e„ = aa'.
\0        «(2«-n)/

Thus, if A2m is zV-symmetric, then also An is £>symmetric. This proves the

theorem for every positive integer n.

2.5. Example. The field C(xx,... ,xn) of fractions of complex polynomials

in xx, . . . , xn, with involution defined byxf=xt,i = 1,2,... ,«,isan example

of a nonnormable *-algebra which is &-symmetric for every positive integer k.

3. Extensions. Let A be a *-algebra and 7 a *-ideal in A. Clearly, if A is

symmetric, then also 7 and A/1 are symmetric. The converse is still an open

problem (even for Banach *-algebras). Here are some observations concern-

ing this problem.

3.1. Observe that A is a *-ideal in Ae such that the quotient algebra A J A,

which is *-isomorphic to the Banach *-algebra C of complex numbers, is

symmetric. Thus our Lemma 2.1 is a special case of this problem.

3.2. The radical 7? of a *-algebra A is a *-ideal in A and every radical *-

algebra is symmetric. Furthermore, A is symmetric if and only if A/R is

symmetric.

3.3. It is well known that a Banach *-algebra is symmetric if and only if it

is Hermitian, i.e. every Hermitian element has real spectrum.

Now let A be commutative and assume that 7 and A/I are Hermitian. We

claim that then also A is Hermitian. Indeed, if h is a Hermitian element in A,

then, since A/I is Hermitian, (e + ih)x = e + a + ib, for some x in A, and

Hermitian a and b in 7. Thus (e + ih)(x - a) = e + i(b - ha), where b - ha

is a Hermitian element in 7. Since 7 is Hermitian, e + i(b - ha) is invertible,

and hence also e + ih. This shows that the spectrum of h in A is real.

3.4. A Banach *-algebra is called a £*-algebra, if ||a*a|| = ||a||2 for all

elements a. It is well known that every 7?*-algebra is symmetric.

Now assume that 7 and A/1 are 7?*-algebras. Then also A is a 7?*-algebra
with respect to the norm

||a|| = max{||z7 + 7||,sup{||ax||: x in 7 and ||jc|| < 1}}.
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4. Completion. Let A be a normed algebra with continuous involution.

Then the completion A of A is a Banach *-algebra. We do not know if the

completion A is Hermitian whenever A is Hermitian. Here are some remarks

concerning this problem.

4.1. For any *-algebra A consider the *-algebra A0 of all infinite matrices

a = (<3y) with atj = 0 for almost all i and /. If A is ^-symmetric for all

k = 1, 2, 3, ..., then Aq has the same property.

In the special case where A is a symmetric Banach algebra with continuous

involution, the completion of A0 with respect to the norm ||a|| = 2 \Wn II is

again symmetric (H. Leptin, private communication).

4.2. In a commutative Banach algebra the spectrum is continuous. Thus, if

A is a commutative Hermitian normed algebra with continuous involution,

then the completion of A is again Hermitian.

4.3. The product Yl At of a family of *-algebras At is a *-algebra with

respect to the involution (a,-) = (a*). The quasi-inverse of a quasi-regular

element (a,-) in JT Aj is given by (—<3,(e — a/)~ ) (with ||a,(e - a,)~ ||

< ||a,||(l - ||a,||)~ if At is normed and ||a,|| < 1). Hence the product JJ Aj

of a family of *-algebras At is symmetric if and only if each At is symmetric.

A similar remark holds for the *-ideal 2 At of all (a,) in T[ Aj with a, = 0

for almost all i, for the normed *-algebra of all (a,-) in JJ ^, with ||(a,)||

= 2 Ik, II < °°> and for the normed *-algebra of all (a,-) in FJ ̂ , with (||a(||)
vanishing at infinity and norm ||(a,)|| = sup||a,||, when the *-algebras Aj are

normed.

References

1. D. W. Bailey, Ozz symmetry in certain group algebras, Pacific J. Math. 24 (1968), 413—419.

MR 39 #6085.
2. R. A. Bonic, Symmetry in group algebras of discrete groups, Pacific J. Math. 11 (1961), 73i—

94. MR 22 #11281.
3. R. S. Doran, A generalization of a theorem of Civin and Yood on Banach *-algebras, Bull.

London Math. Soc. 4 (1972), 25—26. MR 46 #2442.
4. W. Glaser, Symmetric von verallgemeinerten L'-Algebren, Arch. Math. 20 (1969), 656—660.

MR 41 #7448.
5. K. B. Laursen, Symmetry of generalized group algebras, Proc. Amer. Math. Soc. 25 (1970),

318—322; erratum, ibid. 42 (1974), 646; MR 41 #843.
6. H. Leptin, Ozz symmetry of some Banach algebras, Pacific J. Math. 53 (1974), 203—206.

7. J. Wichmann, Hermitian '-algebras which are not symmetric, J. London Math. Soc. (2) 8

(1974), 109—112.

Department of Mathematics, Texas Christian University, Fort Worth, Texas 76129

Current address: Department of Mathematics, Louisiana State University, Baton Rouge,

Louisiana 70803


