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THE COMMUTANTS OF CERTAIN
ANALYTIC TOEPLITZ OPERATORS'

JAMES E. THOMSON

Abstract. In this paper we characterize the commutants of two classes of

analytic Toeplitz operators. We show that if F in Hx is univalent and

nonvanishing, the {TF2}' = {Tz}'. When <p is the product of two Blaschke

factors, we characterize { T )' in terms of algebraic combinations of Toeplitz

and composition operators.

Introduction. Let H2 denote the Hilbert space of functions/analytic in the

open unit disk D which satisfy

sup     (\firew)\2 d6< oo .
0<r<l    J

Let Hx denote the algebra of bounded analytic functions oh D. For <p in

Hx, T is the analytic Toeplitz operator defined by TJ= q>f. Let {T }'

denote the commutant of T , i.e. the algebra of operators which commute

with 7^. The study of analytic Toeplitz operators has been extensive and

many of their properties are well known [2], [4].

In [6], Nordgren gave a sufficient condition for an analytic Toeplitz

operator to have no nontrivial reducing subspaces. Since the projection onto a

subspace commutes with an operator if and only if the subspace reduces the

operator, the problem of finding reducing subspaces can be generalized to

that of determining the commutant of an analytic Toeplitz operator. In a

recent paper [3], Deddens and Wong study this latter problem. One of their

results is that <p univalent implies {T }' = {Tz}', the algebra of analytic

Toeplitz operators. We extend that result to the case where <p is the square of

a nonvanishing univalent function. The extension generalizes and simplifies

Nordgren's Example 2 in [6].

In certain special cases [1], [3], [8], analytic Toeplitz operators induced by

inner functions play a significant role in commutant problems. Since these are

unilateral shifts, their commutants can be characterized matricially [3]. On the

other hand, the problem of finding more revealing function theoretic char-

acterizations of their commutants is difficult. Our main result is a function

theoretic characterization of {T }' when <p is the product of two Blaschke

factors.
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Notation and preliminaries. [X, Y, . . . ] will denote the closed linear span of

the vectors X, Y, ..., and (-,-) will denote the inner product on H2.

Twofunctions which we will often use are KZ(X) = (\ - zA)_1 and BZ(X)

= (z-A)(l -zA)"1.

Note that if BG is the inner-outer factorization of F. then

ker Tp = ker 7£ Tp = ker Tp .

The last equality follows from the fact that Tc has dense range, which implies

that Tq is one-to-one. For details on the inner-outer factorization, see [5].

Theorem 1. Let F in Hx be univalent and nonvanishing. Let tp = F2. Then

{Tvy = {T2y.

Proof. First, we will show that the conclusion holds if there is a set V with

accumulation point in D such that the inner part of tp — tp(z) is Bz for all z in

V. Suppose T G [T }'. Fix z in V. Since T* commutes with T*v(z),

ker   TJ_ w is invariant for T*. But

ker 7^(z) = ker T* =[KZ],

so Kz is an eigenvector for T*. Hence, there exists a number \p(z) such that

T*KZ =\L(z)Kz. Since z was arbitrary, we can do the above for each z in V.

For /in H2 and z in V,

(Tf)(z) = (Tf,Kz) = (f,T*Kz) = {fW)K) = *(*)/(*)•

Therefore, (Tl)(z) = \p(z) for all z in K. Equivalently, we have that (Tf)(z)

= (T\)(z)f(z) for all z in K. Hence, Tf = (T\)f. Since (71)/ is in //2 for

any / in H2, T\ is in /7°° and T= TTV Thus, we have shown that

{Ty}' Q {Tz}' and the reverse inclusion holds for any analytic Toeplitz

operator.

Now, we will establish the existence of a set V with accumulation point in

D such that the inner part of tp — tp(z) is Bz for all z in V. First, we claim that

there exists z0 in D such that tp~](cp(z0)) = {z0}. Suppose not. Then — F(z) is

in F(D) for all z in D. Fix a in D. Since /•/£>) is pathwise connected, there is

a path P parameterized by [0,1] such that

(i) P(0) = F(a),

(ii) P(\)= -F(a),

(iii) P(t) G F(D) for all / in [0,1].

Let 5(7) = -P(t). We claim that /> u Q is a closed path in F(D) with

nonzero winding number about zero. Since F(D) is simply connected, there is

a single-valued analytic branch of the logarithm defined in F(D). Hence,

there is an odd integer k such that

C dz
I   — = logF(z7) - log( - F (a)) = ik-ir.

J p  z

By a change of variable, we then have /A(dz/z) = iktr. Hence, the claim is

established, but that contradicts the fact that zero is not in the simply

connected open set F(D).

Now, let z0 be such that tp~\tp(z0)) = {z0}. Then - F(z0) is not in F(D).

Since F(D) is simply connected, there exists an infinite sequence {un} such

that — un SLF(D) and un —> F(z0). But F(D) is open, so there exists N > 0
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such that n > N implies un is in FiD). We can assume N = 1. Hence, for

every n, there exists zn such that Fizn) = un. Since F is a homeomorphism,

zn -»zo-

<P " *(*,) = (F - F{zn))iF + F(z„)).

Since F — /7(zn) is univalent and has a simple zero at z„, its inner part is fiz .

F + Fizn) is univalent and nonvanishing, so its inner part is trivial. Let

V = {z„}, and the proof is complete.

For B: D —» Z) analytic, let CB be the composition operator on H2 defined

by CBf = / o B. J. Ryff [7] first showed that composition operators define

bounded operators.

In the next theorem, Tx,,2_b) will denote multiplication by l/(z — b). This

is a bounded linear operator from BbH2 onto H2. We shall only apply it to

functions in BbH2.

Theorem 2. Let Biz) = BJz) = (a - z)/(l - az) for some \a\ < 1. //

a ^ 0, fe/

.-i(.-VT^).
If a = 0, let b = 0. Suppose tpiz) = zBiz). Then

{Tw}' = {r1/(z_„>(?>_ + rCiC,): F„ C, E //«\F,(6) = -G,(6)}

= {7>2 + rc CB + orI/(j_w(I - CB ): F2, C72 E //», « E C}.

Proof. First, note that tp ° Z? = <p, so the zeros of

<Pf = (<P(C) - <P)/(1 - 9(c) <f)

are c and 5(c). Second, #(6) = b, so b is the unique fixed point of B in Z).

Suppose T E {F }'. Then i e{I }' for all c E £>, and, equivalently,

r* E {F*}' for all c E Z). Hence T* leaves invariant ker T* Since the zeros

of <pc are c and 5(c), ker T* = [Kc, KB<C)] for c ¥= b. Thus, for c =£ b, there

exist F(c) and G(c) such that r*/^ =F(c)/vf + G(FJA:B(f). For/ £ 772 and

z ¥= b,

(*)        (7/)(z) = (T/./CJ = (/,r**J = F(z)/(z) + C(z)/(5(z)).

Let z'(z) = z. Let g = Fl and h = Tz. For z i= b, g(z) = F(z) + <J(z) and

/z(z) = zFiz) + Z?(z)C7(z). Solving for F and G. we find

/.(z) - B(z)g(z) M*)-**(*)

F(Z)= z-B(z) and    C(Z)=     r-B(z)     ■

Thus, each is analytic on D - {b} and may have, at worst, a simple pole at b.

Next, we claim that F(z) and G(z) are bounded as |z| -> 1. Suppose F(z) is

not. Then there exists {zn} with |zn| -» 1 such that |F(z„)| -^ oo. By passing to

a subsequence, if necessary, we can assume that z„ —> w for some |w| = 1.

Possibly taking another subsequence, we can assume {z„} is uniformly

separated [5, p. 148]. Since B is an automorphism of D, {5(z„)} is uniformly

separated and 5(z„) -> Z?(w). Recalling that Bib) = b and \b\ < 1, we have

Z?(w) ^ w and we can assume that {z„} and (5(zn)} are disjoint. Hence, we

can assume that  {wn}  is uniformly separated where vv2n_, = z„ and n>2n
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= B(zn). Let

fE        W-,„       W',    —  z

i(z)= n r^ -r^- •
n= 1      I    Ln\ In

Then I(B(zn)) = 0 and there exists <5 > 0 such that \I(zn)\ > 8. Let

/,(z) = /(z)(l-|z„|2)'/2(l -z-„z)-'.

Then ||/„||2 = l,/„(zj = /(zj(l -|z„|2r'/2. and/„(/3(zJ) = 0. By (.),

(Tfn)(z„) = F(zn)fn(zn) + G(zn)fn(B(zn)) = 7(z„)/(z„)(l - |zn|2)~'/2.

Hence, \(Tfn)(zn)\ > 8\F(z„)\(\ -|z„|2)-1/2- Since point evaluation at zn is

bounded by (1 -|zn|2)~I/2,

|(7/J(z„)| <\\Tfn\\2(\ -|z„|2)~'/2<||7||(l -|z„|2)"'/2.

Combining this with the above inequality, we have

5|F(zJ|(l-N2)-'/2<||7-||(l-N2)-,/2,

and, thus, |7(z„)| <||T||/5. But this contradicts the assumption that |7(z„)|

—» oo, so F(z) is bounded as |z| —> 1. By a similar argument we can show that

G(z) is bounded as |z| —> 1.

Since F + G = 71, we know F + G G H2. Combining this with the fact

that F + G is bounded near 3D, we have F + G G //°°. Hence, (z - b)

(F(z) + G(z)) has a zero at b; and therefore, the Hx functions 7, = (z — b)

F and G, = — (z — 7>)G are equal at ft. Thus, (*) becomes

7= T\/(z-b)(Tlz_b)F + T(2_b)GCB) = T1/,(z_6)(rF| + TGCB)

= ^i/U-wC^.-^W + ^-Cl/j) + T\/u-b)(F\(b) + G,(7>)CB)

= 7>2+ 7-ClCfl+ F,(6)rI/(,_w(l - C,)

= tf2 + T^O. + «^/(z-w(' - Cfi )

where

7,-7,(6) G, -G,(7>)

^ =       z - 6 3nd    C* =       z - b

and a G C.

It is a straightforward computation to show that any operator of the form,

T\/(z-b)(TF, + tg,cb) with F\ and G\ in H°° and ^lW = ~ G\(°)- commutes

with T9.

Corollary. If tp = BaBcfor a.e G D, then {T^}' = {TzBAz)}' where

a + c —1<7| c — \c\ a
d= -   '      2 ■

l-|a|2|c|2

Proof.

{^cp}' =   {^(ac-V)/(l-«<p)}' =   {TzBd(z)}'
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since the zeros of (ac - (jd)/(1 -acq)) are zero and d.
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