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COUNTING 3 BY n LATIN RECTANGLES

K. P. BOGART AND J. Q. LONGYEAR

Abstract. A k by n rectangular array A is called a Latin rectangle if all

the integers 1, 2, . . . , n appear in each row of A and if k distinct integers

occur in each column of A. The number of k by n Latin rectangles is

unknown for k > 4; Riordan has given a formula for the number of 3 by n

rectangles in terms of the solutions of the derangement (or displacement)

problem and the menage problem. In this paper we derive an elementary

formula for the number of 3 by n Latin rectangles by using Mobius

inversion.

We include a table giving the approximate number of 3 by n Latin

rectangles for " < 20. The table has exact values for n < 11.

1. Introduction. A k by n Latin rectangle or Youden design is a k by n

matrix with the properties that each row contains all the integers 1,2, ... ,n

and each column contains k distinct integers. If L(k, n) is the number of k by

n Latin rectangles, then L(k, n) is unknown when 4 < k < n except for some

specific values of n. It is known that P(l, n) = n\ and that P(2, n) = [1/2 4-

n\/e] where the square brackets denote the greatest integer function. Riordan

[4] gives several elegant formulae for P(3, n) in terms of menage numbers,

displacement numbers and various recursions.

In this paper we obtain an elementary formula for P(3, n) by using Mobius

inversion on a suitable lattice. We append a table giving the exact value of

P(3, n) for at < 11 and the approximate values for n < 20. This table was

prepared by C. W. Kaufman and F. L. Toher, Jr., using the Dartmouth Time

Sharing System and the language COMPASS written by Mr. Kaufman.

For a discussion of Mobius inversion, see Rota [5].

2. Preliminary discussion. We denote sets by Roman capitals and their

cardinalities by the corresponding lower case letter, thus X is a set of

cardinality x. Rather than beginning with Latin rectangles, we consider the

collection Q of all 3 by n arrays of integers in which each row is a

permutation of 1, 2, . . . , n. We associate with each 3 by n array in Q an

ordered triple of sets of columns. The set Ey for 1 </'</< 3 is the set of all

columns for which row i and row / have the same entry. The array then

uniquely determines the triple of sets (Ex2, P,3, P23). Those arrays whose

triple is (cp, cp, cp) are Latin rectangles. Not every triple of sets of columns (A,

B, C) can be obtained in this manner since the following condition obviously

holds for the "equality triples":

(l) e0 n £Jk = p12 n p13 n e23.
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It can be shown that the equality triples form a lattice L under the relation

< defined by (5,, B2, B3) < iAx, A2, A3) iff each 7?, is a subset of At. If we let

fiAx, A2, A3) be the number of arrays having L4,, A2, A3) as equality triple,

and let g(7?,, B2, B3) be the number of arrays whose equality triple contains

(73„ B2, B3), then

giBx,B2,B3) = ^fiAx,A2,A3)

where the sum runs over all triples (4,, A2, A3) > (/?,, B2, B3). Thus, as in [5],

we may use the Mobius function jtt of the lattice L to obtain the following

formula:

(2) f(A „ A2, A3) = 2 KO, 4>, *), (B„ B2, *3))s(B„ *2, *3)-

The sum runs over all triples (7?,, 7?2, B3) > L4,, ,42, /13). In particular, if

(/4,, y42, /43) = (</>, <£, <|>), we have

(3) 7,(3, «) = /(<?,, <#>,<?>) = 2 /*((*, *, *). (*i> *2> B3))giBx, B2, B3).

The sum is over all equality triples. Thus we need to determine g and

compute v..

3. Deriving the Mobius function of L. Crapo [2] has shown that if M is a

locally finite lattice with a closure relation, and if N is the ordered set of

closed elements of M, then, denoting the corresponding Mobius functions by

p.M and nN,

(4) V-N(x,y) = 2 Pm(x> z)-

(Bogart [1] and Greene [3] have shown that this result holds if the word poset

is substituted for lattice. Greene's proof is particularly nice.) Here the sum

runs over all elements z in M such that the closure of z is _y. In order to apply

(4) with N = L, we need a lattice M with a known or easily derived Mobius

function, and a closure y from M to L. We use the lattice of all triples of sets

of columns for M, since this has the well-known Mobius function u:3 given by

rt3((^1,/l2,/(3),(fi1,JB2,JB3)) = (-l)'

where t = ax — bx + a2 — b2 + a3 — b3.

For our closure relation we let

y(A, B, C) = (A U (B n C), B u {A n C), C u {A n B)).

It is not difficult to verify that y is a closure in the sense that y satisfies the

usual properties for a closure, namely

(i) y(A, B, C)<(A, B, C),
iii) y\A, B, C) = yiA, B, C),
(iii) if iA, B, C) < (7), E, F) then yiA, B, C) < y(Z>, £, F).It is also easy

to verify that a triple is y-closed if and only if it is an equality triple. We must

determine exactly which sets close to a given equality triple in order to

compute the Mobius function n of L from p3.

Let (U, V, W) be an equality triple with U n V n W = S, and suppose

that yiX, Y, Z) = (17, K, MK). Then
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u=xu(YnZ)<zxu(Vn w) = x u(U n v n w)

= XuSGU(jS=U.

Thus U = X u S. Similarly, V = Y U S and W = Z u S. These three

equations are not sufficient to insure that the closure of (X, Y, Z) is the triple

(U, V, W), for if c were in 5 but not in Y u Z, then y(X, Y, Z) would not be

(U, V, W). Thus every c in S must be contained in at least two of the sets X,

Y and Z.
If the triple (X, Y,Z) has the property that each element of S is in at least

two sets in the triple and satisfies the equations U = X (j S, V = Y U S,

and W = Z u S, then (X, Y, Z) closes to (U, V, W).

Now we determine how many triples have (U, V, W) as their closure.

Select any subset P of S to be the set of those elements of S to be contained

in exactly two members of a triple closing to (U, V, W). Each of the 3'

functions A from P to (1, 2, 3} gives rise to a unique decomposition

fi, = A"'(l), B2 = X"'(2), B3 = A~'(3) of P, and conversely, so that there are

exactly 3' possible triples closing to (U, V, W) defined by the equations in (5).

(5) X = U - Bx,    Y = V - B2,    Z = W - B3.

Thus for each PCS, there are 3' triples closing to (U, V, W), and we may

rewrite (4) in the case that x is the triple of empty sets (which is closed) and

the z's are the triples (X, Y, Z) closing to (U, V, W) as

(6) M((*. *. *). (U, V, W)) = 2 3'(-l)"+0+w-'

where the sum ranges over all subsets P of S = Pn V D W. This gives

/i((cs, cp, cp), (u,v,w)) = t (sh<(-v)(-Du+v+w

(7) = (_!)«+•+»(! _ 3)»_ r-i)u+-+^f-2y

■ (_l)»+»+»'+'(2)*.

Substituting (7) into (3) we obtain the following expression for the number

of 3 X n Latin rectangles:

(8) P(3, n) = /(<#>, cp, cp) = ^(-l)u + v + w+s(2)sg(U, V, W)

where the sum is over all equality triples (U, V, W), and s = \U n V n W\.

4. Computing g( U, V, W) and the number of latin rectangles. To compute

g(U, V, W), let

s = u n v n w,   p= u- s,   Q = v- s,   r = w- s.
Thus (- Du + V+W+S = (- Du+V+W~3s = (- iy + "+r. The number of ordered

triples (U, V, W) with given values of p, q, r and .y is the multinomial

coefficient C(n; p, q, r, s, d) where d=n-(p + q + r + s) since P, Q, R

and S are pairwise disjoint. Let N denote the set of the n columns of our

array. Let D be the columns not in P, Q, R or S, i.e., D = N-(P\jQu

R u S). We can rewrite (8) as

(9) P(3, r) = f(cp, cp, cp) = ^(-l)p + q+r(2Yg(U, V, W)C(n;p, q, r, s, d)
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where the sum is over all possible sets of parameters ip, q, r, s, d) and (t/, V,

W) is any equality triple with these parameters. (Note that the parameters

uniquely determine giU, V, W).)

We now compute giU, V, W) for a given parameter set and fixed U, V and

W with these parameters. First select any set of 5 integers between 1 and n to

go in the columns of S = U C\ V n W. There are 5! ways of arranging these

integers among the columns. So far we have filled in all three rows of our

array in the columns of 5. Now the columns of P are where rows 1 and 2

agree; we select p integers from the n — s integers not in the columns of S

and arrange them in the columns of P in rows 1 and 2 in p\ ways. The

columns of Q are where rows 1 and 3 agree. We select q integers from the

« — s — p remaining integers and arrange them in the columns of Q in row 1

and row 3 in 67! ways. The columns of 7? are where rows 2 and 3 agree. We

select r integers from the n — s — p — q remaining ones and arrange them in

the columns of 7? in rows 2 and 3 in r\ ways. There are

iq + d)\= in - p - r - s)\

ways to arrange the remaining elements of row 1, (r + d)\ ways to arrange

the remaining elements of row 2 and (p + d)\ ways to arrange the remaining

elements of row 3. This gives

g(u,v,w) = (»)si(»-/)pi(n-sq-y.("-i>-/-y.

(10) X(<7 + d)\(r+ d)\(p + d)'

= «! iq + d)\ ir + d)\ ip + d)\/d\.

By substituting (10) into (9) we obtain

£(3. «) = 2 (- l)P + " + ri2)sn\ iq + d)\ ir + d)\ ip + d)\

X dn;p, q, r, s, d)/d\(11) v "

= 2(-l)' + « + ,(2)>!)2

X(q + d)\ ir + d)\ (p + d)\/(d\ fp\q\r\s\

where the sum is over all ordered partitions or compositions (p, q, r, s, d) of

«.

Values of N (3, «) for 3 < n < 20. To allow accurate computation for large

values of n, we computed A (3, «)/(«!), the number of Latin rectangles with

first row 1, 2, 3, . . . , «.
rt A(3, rt)/rt!

3 2
4 24

5 552
6 21,280
7 103,760
8 70,229,264
9 5,792,853,248

10 587,159,944,704
11 71,822,743,499,520
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Approximate values for N(3, n)/n\ for 12 < n < 20

12 1.04352735037 X 1016

13 1.77678070051 X 1018

14 3.50461958857 x 1020

15 7.92840412826 X 1022

16 2.03927654048 x 1025

17 5.91793423080 X 1027

18 1.92442722632 X 1030

19 6.96979289286 X 1032

20 2.79603955401 X 1035
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