SOME SUFFICIENT CONDITIONS FOR QUINTIC RESIDUACITY

YUN-CHENG ZEE

Abstract

It is shown that for a prime p of the form $5 f+1$, a prime $q>5$ is a quintic residue $(\bmod p)$ if $u \equiv 0, v \equiv k w$ or $u \equiv k w, v \equiv 0$ $(\bmod q)$, where k satisfies $k^{2} \equiv-3,5$ or $-15(\bmod q)$.

In his study of cyclotomy of order 5, L. E. Dickson [1, Theorem 8] showed that for each prime $\equiv 1(\bmod 5)$, there are exactly four simultaneous solutions of the Diophantine equations

$$
\begin{gather*}
16 p=x^{2}+50 u^{2}+50 v^{2}+125 w^{2} \tag{1}\\
x w=v^{2}-u^{2}-4 u v, \tag{2}
\end{gather*}
$$

with $x \equiv 1(\bmod 5)$. If (x, u, v, w) is one solution, the other three are $(x,-u$, $-v, w),(x, v,-u, w)$ and $(x,-v, u,-w)$. The values of x, u, v and w have been used in giving criteria for the quintic residuacity of the primes $q=2,3$ [2, pp. 13, 15], 5 [4, p. 122]. E. Lehmer [4, p. 124] showed that q is a quintic residue $(\bmod p)$ if $u \equiv v \equiv w \equiv 0(\bmod q)$. A more general result giving a sufficient condition for the r th power residuacity of q is due to J. B. Muskat [6, Theorem 3]. When $r=5$, Muskat's condition, restated in terms of x, u, v and w, becomes $u \equiv v \equiv 0(\bmod q)$.

Let p be a prime of the form $e f+1, g$ a primitive root of p and ξ a p th root of unity. The periods η_{k}, where $k=0,1, \ldots, e-1$, are defined by

$$
\eta_{k}=\sum_{t=1}^{f-1} \xi^{g^{e t+k}} .
$$

The equation

$$
\varphi(y)=\prod_{i=0}^{e-1}\left(y-\eta_{i}\right)=0
$$

is called the period equation of degree e. A theorem of Kummer [3, p. 436] states that if e is a prime, then each prime divisor of the numbers represented by $\varphi(y)$ is an e th power residue $(\bmod p)$. The reduced period equation

$$
F(z)=\prod_{i=1}^{e-1}\left(z-\rho_{i}\right)=0
$$

with the roots $\rho_{i}=e \eta_{i}+1$ is simpler than $\varphi(y)=0 . F(z)$ and $\varphi(y)$ are

[^0]related by $e^{e} \varphi(y)=F(z)$, where $z=e y+1$. The following lemma is then obvious:

Lemma. If e is a prime, then each prime divisor $\neq e$ of the numbers represented by $F(z)$ is an eth power residue $(\bmod p)$.

Theorem. Let p be a prime of the form $5 f+1$. A prime $q>5$ is a quintic residue $(\bmod p)$ if $u \equiv 0, v \equiv k w$ or $u \equiv k w, v \equiv 0(\bmod q)$, where k satisfies $k^{2} \equiv-3,5$ or $-15(\bmod q)$.

Proof. The reduced period equation of degree 5 is [2, (10)]

$$
\begin{align*}
F(z)= & z^{5}-10 p z^{3}-5 p x z^{2}-5 p\left[\left(x^{2}-125 w^{2}\right) / 4-p\right] z \tag{3}\\
& +p^{2} x-p\left[x^{3}+625\left(u^{2}-v^{2}\right) w\right] / 8
\end{align*}
$$

For simplicity, congruences will be modulo q throughout. Assume $u \equiv 0$, $v \equiv k w \neq 0$. Let j satisfy $j k \equiv 1$. By (2), $x w \equiv k^{2} w^{2}$, so that $w \equiv j^{2} x$ and $v \equiv j x$. Substituting u, v and w into (1) and (3) yields

$$
\begin{equation*}
16 p \equiv\left(125 j^{4}+50 j^{2}+1\right) x^{2} \tag{4}
\end{equation*}
$$

$$
\begin{aligned}
8 F(z) \equiv & 8 z^{5}-80 p z^{3}-40 p x z^{2}-5 p\left[2 x^{2}\left(1-125 j^{4}\right)-8 p\right] z \\
& +8 p^{2} x-p x^{3}\left(1-625 j^{4}\right)
\end{aligned}
$$

respectively. In (5), let $z=x$ and simplify:

$$
8 F(x) \equiv x\left[8 x^{4}+\left(1875 j^{4}-131\right) p x^{2}+48 p^{2}\right]
$$

Multiplying by 16 and applying (4) give

$$
\begin{aligned}
& 128 F(x) \equiv x^{5}\left[128+\left(1875 j^{4}-131\right)\left(125 j+50 j^{2}+1\right)\right. \\
& \\
& \left.\quad+3\left(125 j^{4}+50 j^{2}+1\right)^{2}\right] \\
& \equiv x^{5}\left[128+\left(125 j^{4}+50 j^{2}+1\right)\left(2250 j^{4}+150 j^{2}-128\right)\right] \\
& \equiv 6250 x^{5} j^{2}\left(45 j^{6}+21 j^{4}-j^{2}-1\right) \\
& \equiv 6250 x^{5} j^{2}\left(3 j^{2}+1\right)^{2}\left(5 j^{2}-1\right) .
\end{aligned}
$$

Hence

$$
2^{6} k^{8} F(x) \equiv(5 x)^{5}\left(3+k^{2}\right)^{2}\left(5-k^{2}\right)
$$

Since $q \neq 2$, the last congruence implies that if $k^{2} \equiv-3$ or 5 , then $F(x) \equiv 0$ or $q \mid F(x)$. By the Lemma, q is a quintic residue, $(\bmod p)$. Now, let $z=0$ in (5) and simplify:

$$
8 F(0) \equiv p x\left[8 p-x^{2}\left(1-625 j^{4}\right)\right]
$$

Multiply by 2 and apply (4):

$$
\begin{aligned}
16 F(0) & \equiv p x^{3}\left[\left(125 j^{4}+50 j^{2}+1\right)-\left(1-625 j^{4}\right)\right] \\
& \equiv 50 p x^{3} j^{2}\left(15 j^{2}+1\right)
\end{aligned}
$$

Hence

$$
2^{3} k^{4} F(0) \equiv 5^{2} p x^{3}\left(15+k^{2}\right)
$$

By the Lemma if $k^{2} \equiv-15, q$ is a quintic residue $(\bmod p)$. If we assume $u \equiv k w \not \equiv 0, v \equiv 0$ and let $j k \equiv 1$, we get $w \equiv-j^{2} x, u \equiv-j x$. Substitutions of u, v and w into (1) and (3) yield again (4) and (5) respectively, thus leading to the same condition on k. This completes the proof.

It is noted that for $q=7$, the sufficient condition in the last theorem becomes $u \equiv 0, v \equiv \pm 2 w$ or $u \equiv \pm 2 w, v \equiv 0$, which is a partial restatement of Muskat's condition (see [5, Theorem 2]).

We give an illustration for $q=11$. Since -3 and -15 are quadratic nonresidues $(\bmod 11)$, the condition on k is reduced to $k^{2} \equiv 5(\bmod 11)$. For primes of the form $5 f+1$ less than 2,000 this condition yields five primes, of which 11 is a quintic residue, as given by the following table:

p	x	u	v	w	k	ind $11(\bmod p)$		
311	-49	7	7	0	1	7	135	1
661	1	0	-3	9	-4	380	1	
691	41	-2	11	5	4	335	1	
751	71	4	11	-1	-4	715	1	
1181	-64	0	16	-4	-4	160	1	

The author wishes to thank Professor Muskat for the use of his collection of data on the cyclotomic numbers [1] of order 5 from which the values of x, u, v and w were computed at the Computer Center of the California State University, Fullerton. The author is grateful to the referee for his valuable suggestions.

References

1. L. E. Dickson, Cyclotomy, higher congruences and Waring's problem, Amer. J. Math. 57 (1935), 391-424.
2. E. Lehmer, The quintic character of 2 and 3, Duke Math. J. 18 (1951), 11-18. 7 12, 6779
3.__ Period equations applied to difference sets, Proc. Amer. Math. Soc. 6 (1955), 433-442. MR 16, 904.
3. ___ , Artiads characterized, J. Math. Anal. Appl. 15 (1966), 118-131. MR 34 \# 1261.
4. , On the divisors of the discriminant of the period equation, Amer. J. Math. 90 (1968), 375-379. MR 37 \# 2718.
5. J. B. Muskat, Reciprocity and Jacobi sums, Pacific J. Math. 20 (1967), 275-280. MR 35 \# 1543.

Department of Mathematics, California State University, Fullerton, California 92634

[^0]: Received by the editors December 11, 1974 and, in revised form, March 17, 1975.
 AMS (MOS) subject classifications (1970). Primary 10A15; Secondary 10C05, 12C20.
 Key words and phrases. Cyclotomy, cyclotomic numbers, quintic residuacity, period, period equation.

