SOME SUFFICIENT CONDITIONS FOR QUINTIC RESIDUACITY

YUN-CHENG ZEE

ABSTRACT. It is shown that for a prime p of the form 5f + 1, a prime q > 5 is a quintic residue (mod p) if $u \equiv 0$, $v \equiv kw$ or $u \equiv kw$, $v \equiv 0$ (mod q), where k satisfies $k^2 \equiv -3$, 5 or $-15 \pmod{q}$.

In his study of cyclotomy of order 5, L. E. Dickson [1, Theorem 8] showed that for each prime $\equiv 1 \pmod{5}$, there are exactly four simultaneous solutions of the Diophantine equations

(1)
$$16p = x^2 + 50u^2 + 50v^2 + 125w^2$$
,

(2)
$$xw = v^2 - u^2 - 4uv,$$

with $x \equiv 1 \pmod{5}$. If (x, u, v, w) is one solution, the other three are (x, -u, -v, w), (x, v, -u, w) and (x, -v, u, -w). The values of x, u, v and w have been used in giving criteria for the quintic residuacity of the primes q = 2, 3 [2, pp. 13, 15], 5 [4, p. 122]. E. Lehmer [4, p. 124] showed that q is a quintic residue (mod p) if $u \equiv v \equiv w \equiv 0 \pmod{q}$. A more general result giving a sufficient condition for the rth power residuacity of q is due to J. B. Muskat [6, Theorem 3]. When r = 5, Muskat's condition, restated in terms of x, u, v and w, becomes $u \equiv v \equiv 0 \pmod{q}$.

Let p be a prime of the form ef + 1, g a primitive root of p and ξ a pth root of unity. The periods η_k , where $k = 0, 1, \ldots, e - 1$, are defined by

$$\eta_k = \sum_{t=1}^{f-1} \xi^{g^{et+k}}.$$

The equation

$$\varphi(y) = \prod_{i=0}^{e-1} (y - \eta_i) = 0$$

is called the period equation of degree e. A theorem of Kummer [3, p. 436] states that if e is a prime, then each prime divisor of the numbers represented by $\varphi(y)$ is an eth power residue (mod p). The reduced period equation

$$F(z) = \prod_{i=1}^{e-1} (z - \rho_i) = 0$$

with the roots $\rho_i = e\eta_i + 1$ is simpler than $\varphi(y) = 0$. F(z) and $\varphi(y)$ are

Received by the editors December 11, 1974 and, in revised form, March 17, 1975.

AMS (MOS) subject classifications (1970). Primary 10A15; Secondary 10C05, 12C20.

Key words and phrases. Cyclotomy, cyclotomic numbers, quintic residuacity, period, period equation.

related by $e^e \varphi(y) = F(z)$, where z = ey + 1. The following lemma is then obvious:

LEMMA. If e is a prime, then each prime divisor $\neq e$ of the numbers represented by F(z) is an eth power residue (mod p).

THEOREM. Let p be a prime of the form 5f + 1. A prime q > 5 is a quintic residue (mod p) if $u \equiv 0$, $v \equiv kw$ or $u \equiv kw$, $v \equiv 0 \pmod{q}$, where k satisfies $k^2 \equiv -3$, 5 or $-15 \pmod{q}$.

PROOF. The reduced period equation of degree 5 is [2, (10)]

(3)
$$F(z) = z^{5} - 10pz^{3} - 5pxz^{2} - 5p[(x^{2} - 125w^{2})/4 - p]z + p^{2}x - p[x^{3} + 625(u^{2} - v^{2})w]/8.$$

For simplicity, congruences will be modulo q throughout. Assume $u \equiv 0$, $v \equiv kw \neq 0$. Let j satisfy $jk \equiv 1$. By (2), $xw \equiv k^2w^2$, so that $w \equiv j^2x$ and $v \equiv jx$. Substituting u, v and w into (1) and (3) yields

(4)
$$16p \equiv (125j^4 + 50j^2 + 1)x^2,$$

(5)
$$8F(z) \equiv 8z^5 - 80pz^3 - 40pxz^2 - 5p[2x^2(1 - 125j^4) - 8p]z + 8p^2x - px^3(1 - 625j^4),$$

respectively. In (5), let z = x and simplify:

$$8F(x) \equiv x \Big[8x^4 + (1875j^4 - 131)px^2 + 48p^2 \Big].$$

Multiplying by 16 and applying (4) give

$$128F(x) \equiv x^{5} \Big[128 + (1875j^{4} - 131)(125j + 50j^{2} + 1) \\ + 3(125j^{4} + 50j^{2} + 1)^{2} \Big]$$
$$\equiv x^{5} \Big[128 + (125j^{4} + 50j^{2} + 1)(2250j^{4} + 150j^{2} - 128) \Big]$$
$$\equiv 6250x^{5}j^{2}(45j^{6} + 21j^{4} - j^{2} - 1)$$
$$\equiv 6250x^{5}j^{2}(3j^{2} + 1)^{2}(5j^{2} - 1).$$

Hence

$$2^{6}k^{8}F(x) \equiv (5x)^{5}(3+k^{2})^{2}(5-k^{2}).$$

Since $q \neq 2$, the last congruence implies that if $k^2 \equiv -3$ or 5, then $F(x) \equiv 0$ or q|F(x). By the Lemma, q is a quintic residue, (mod p). Now, let z = 0 in (5) and simplify:

$$8F(0) \equiv px \Big[8p - x^2 (1 - 625j^4) \Big].$$

Multiply by 2 and apply (4):

$$16F(0) \equiv px^{3} [(125j^{4} + 50j^{2} + 1) - (1 - 625j^{4})]$$
$$\equiv 50px^{3}j^{2}(15j^{2} + 1).$$

Hence

YUN-CHENG ZEE

$$2^{3}k^{4}F(0) \equiv 5^{2}px^{3}(15 + k^{2}).$$

By the Lemma if $k^2 \equiv -15$, q is a quintic residue (mod p). If we assume $u \equiv kw \neq 0$, $v \equiv 0$ and let $jk \equiv 1$, we get $w \equiv -j^2x$, $u \equiv -jx$. Substitutions of u, v and w into (1) and (3) yield again (4) and (5) respectively, thus leading to the same condition on k. This completes the proof.

It is noted that for q = 7, the sufficient condition in the last theorem becomes $u \equiv 0$, $v \equiv \pm 2w$ or $u \equiv \pm 2w$, $v \equiv 0$, which is a partial restatement of Muskat's condition (see [5, Theorem 2]).

We give an illustration for q = 11. Since -3 and -15 are quadratic nonresidues (mod 11), the condition on k is reduced to $k^2 \equiv 5 \pmod{11}$. For primes of the form 5f + 1 less than 2,000 this condition yields five primes, of which 11 is a quintic residue, as given by the following table:

р	$\int_{1}^{1} x$	u	v	w	k	ind 11(mod <i>p</i>)
311	- 49	1 7	0	1	1 7	135
661	1	0	<u>-</u> 3	9	- 4	380
691	41	- 2	11	5	4	335
751	71	4		- 1	- 4	715
1181	- 64	0	16	- 4	- 4	160

The author wishes to thank Professor Muskat for the use of his collection of data on the cyclotomic numbers [1] of order 5 from which the values of x, u, v and w were computed at the Computer Center of the California State University, Fullerton. The author is grateful to the referee for his valuable suggestions.

References

1. L. E. Dickson, Cyclotomy, higher congruences and Waring's problem, Amer. J. Math. 57 (1935), 391-424.

2. E. Lehmer, The quintic character of 2 and 3, Duke Math. J. 18 (1951), 11-18. 7 12, 6779

3. _____, Period equations applied to difference sets, Proc. Amer. Math. Soc. 6 (1955), 433-442. MR 16, 904.

4. _____, Artiads characterized, J. Math. Anal. Appl. 15 (1966), 118-131. MR 34 #1261.

5. _____, On the divisors of the discriminant of the period equation, Amer. J. Math. 90 (1968), 375-379. MR 37 #2718.

6. J. B. Muskat, Reciprocity and Jacobi sums, Pacific J. Math. 20 (1967), 275-280. MR 35 #1543.

DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE UNIVERSITY, FULLERTON, CALIFORNIA 92634