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Abstract. It is shown that for a prime p of the form 5/+ 1, a prime

q > 5 is a quintic residue (mod p) if u = 0, t> = kw or u = kw, v = 0

(mod <jr), where k satisfies k1 = -3, 5 or - 15 (mod q).

In his study of cyclotomy of order 5, L. E. Dickson [1, Theorem 8] showed

that for each prime = 1 (mod 5), there are exactly four simultaneous solu-

tions of the Diophantine equations

(1) 16/7 = x2 + 50u2 + 50u2 + 125vv2,

(2) xw = v2 - u2 - Auv,

with x = 1 (mod 5). If (x, u, u, w) is one solution, the other three are (x, — u,

— v, w), (x, v, — u, w) and (x, — v, u, — w). The values of x, u, v and w have

been used in giving criteria for the quintic residuacity of the primes q — 2, 3

[2, pp. 13, 15], 5 [4, p. 122]. E. Lehmer [4, p. 124] showed that q is a quintic
residue (mod p)ifu = v = w = 0 (mod q). A more general result giving a

sufficient condition for the rth power residuacity of q is due to J. B. Muskat

[6, Theorem 3]. When r = 5, Muskat's condition, restated in terms of x, u, v

and w, becomes u = v = 0 (mod q).

Let/? be a prime of the form ef + 1, g a primitive root of p and £ a/>th root

of unity. The periods nk, where k = 0, 1, . . ., e — 1, are defined by

The equation

e-l

<p(>0 = II (.y - 7,,) = o
;=o

is called the period equation of degree e. A theorem of Kummer [3, p. 436]

states that if e is a prime, then each prime divisor of the numbers represented

by <p(y) is an eth power residue (mod/?). The reduced period equation

F(z) =  II (z - Pi) = 0
( = 1

with the roots p, = er)i. + 1  is simpler than <p(y) = 0. F(z) and qp(j>) are
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related by ee<piy) = Fiz), where z = ey + 1. The following lemma is then

obvious:

Lemma. // e is a prime, then each prime divisor ¥= e of the numbers

represented by Fiz) is an eth power residue iraod p).

Theorem. Let p be a prime of the form 5/4- 1. A prime q > 5 is a quintic

residue (mod p) if u = 0, v = kw or u = kw, v = 0 (mod q), where k satisfies

k2 = -3, 5 or - 15 (mod q).

Proof. The reduced period equation of degree 5 is [2, (10)]

Fiz) = z5 - \0pz3 - 5pxz2 - 5p\ix2 - \25w2)/4 - p]z

(3) L J
+p2x - p[x3 + 625(u2 - u2)vv]/8.

For simplicity, congruences will be modulo q throughout. Assume u = 0,

v = kw s£ 0. Let j satisfy jk = 1. By (2), xw = khv2, so that w = j2x and

v =jx. Substituting u, v and w into (1) and (3) yields

(4) \6p =(125/ + 50/ + 1)jc2,

8F(z) = 8z5 - 80/>z3 - 40pxz2 - 5p[2x2(l - 125/) - o>]z

+ %p2x - px\\ -625/),

respectively. In (5), let z = x and simplify:

8f (x) = x[8jc4 + (1875/ - I3l)px2 + 4Sp2].

Multiplying by 16 and applying (4) give

128F(x) = x5[l28 + (1875/ - 131)(125y + 50/ + 1)

+ 3(125/ + 50/ + l)2]

= x5[128 + (125/ + 50/ + 1)(2250/ + 150/ - 128)]

= 6250x5/(45/ + 2l/-/- 1)

= 6250x5/(3/ + 1)2(5/ - 1).

Hence

26kiFix) = (5x)5(3 + A:2)2(5 - k2).

Since q ¥= 2, the last congruence implies that if k2 = -3 or 5, then Fix) = 0

or q\Fix). By the Lemma, q is a quintic residue, (mod/7). Now, let z = 0 in

(5) and simplify:

8F(0) =px[%p - x2(l - 625/)].

Multiply by 2 and apply (4):

16F(0) = px3[i\25j4 + 50/ + 1) - (1 - 625/)]

= 50px3j2(l5j2 + 1).

Hence
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23A:4P(0) = 5>x3(15 + k2).

By the Lemma if k2 = — 15, q is a quintic residue (mod p). If we assume

u = kw ^ 0, v = 0 and let jk = 1, we get w = —j2x, u = — jx. Substitutions

of u, v and w into (1) and (3) yield again (4) and (5) respectively, thus leading

to the same condition on k. This completes the proof.

It is noted that for q — 1, the sufficient condition in the last theorem

becomes u = 0, v = ±2w or u = ±2w, v = 0, which is a partial restatement

of Muskat's condition (see [5, Theorem 2]).

We give an illustration for q = 11. Since —3 and —15 are quadratic

nonresidues (mod 11), the condition on k is reduced to k2 = 5 (mod 11). For

primes of the form 5/ + 1 less than 2,000 this condition yields five primes, of

which 11 is a quintic residue, as given by the following table:

p x u v w k       ind ll(mod/>)

311 i    -49   i        7i        0   i        li        7i 135 i
661 ' 1    l        0   ' - 3    '        9   I    - 4   ' 380 i

691 41-2 11 5 4 335
751 71 4 11-1-4 715

1181 i   -64   i       0   i      16   i    -4   i    -4   i 160 ,
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