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THE SET WHERE AN APPROXIMATE

DERIVATIVE IS A DERIVATIVE

RICHARD J. O'MALLEY

Abstract. Let/ ■ [0,1] -» R possess a finite approximate derivative/' . Let

E be the set of points x where / is actually differentiable. It is shown that for

every X if [x •■ f'ip(x) = X} ¥= 0, then {x ■■ f'^(x) = X } n E # 0. A strength-

ening of the mean value theorem associated with approximate derivatives is

an immediate corollary.

Introduction. In this paper we will be interested in functions/ = [0,1] —► 7?

which possess a finite approximate derivative /' . More precisely, we will

investigate the set E where/is actually differentiable. Several facts are already

known about E. For example in [1], C. Goflfman and C. J. Neugebauer provide

a simple proof that E contains a dense open subset of [0, 1]. Further, in [4], C.

E. Weil develops two interesting properties of E. One property is that for every

pair of numbers a, b if [x •■ a < /ap(x) < b) =£ 0, then {x ■• a < /' (x) < b)

n E ¥= 0. Here, using methods not dependent on Weil's results, we establish

a stronger property of E. Namely, for every real number A, if {x ■ f'(x) = X)

=/= 0, then {x ■ /ap(x) = A} n E ¥= 0. This also shows that /' has the

Darboux property on E because f has the Darboux property. In turn, this

leads to a strengthening of the mean value theorem associated with approxi-

mately differentiable functions.

We will use the following basic definitions and known properties: Let m denote

Lebesgue measure on [0,1].

Definition 1. A measurable set A has density 1 at 0 if and only if

lirn^o/n(<4 D [0,x])/x = 1.
Definition 2.      A function / is said to have an approximate derivative /'

on [0, 1] if for each x0 in [0, 1] there is a set Aix0) having density 1 at 0, such

that/(jc„ ±h) = fixQ) ± M/ap(*o) + H±h)) where \imh^0Xi±h) = 0 when

h is restricted to Aix0).

Property 1. The function/' is a Baire class 1 function having the Darboux

(intermediate value) property.

Property 2. If /' > 0 (< 0) on (a,b) E [0,1], then / is nondecreasing

(nonincreasing), and /' is the derivative of / on [a, b], one-sided at the

endpoints. For further elaboration see [1] and [4].

We will need one lemma, the proof of which is straight-forward and differs

very little from a lemma in Tolstoff [3, p. 499] or O'Malley [2, Lemma 3]. For

brevity we have chosen to omit the details of the proof.
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Lemma. Let f ■ [c, d] —> R possess an approximate derivative f. Let c > 0 be

fixed and B(x) = {y ■ \f(y) - f(x)\ < e|y - x\). Let Hn be the set of those x

such that m(B(x) n /) > \m(J) for all intervals J C [c, d) with x in J and

m(J) < l/n. Then for the closure Hn of Hn we have:

(a) If x, y are in Hn, with \x — y\ < l/n, then \f(y) — f(x)\ < c|y - x\.

(b) If x is in Hn, then m(B(x) fiy)> \m(J) for all intervals J C [c,d] with

x in J and m(J) < l/n.

We now prove our

Theorem . Let f ■ [0,1] -* R possess an approximate derivative f , and let

E = {x ■• f exists at x). IfX is any real number such that {x : f'ap(x) = X) ¥= 0,

then {x :/;pW = A} n P ¥= 0.

Proof. It will suffice to let X = 0. In the general case we would then

consider g(x) = f(x) — Xx. We let G denote the closure of {x :/LM = 0}.

By the Darboux property of/' we have that, on any component interval of

the complement of G, /' is of constant sign. Hence by Property 2, / is strictly

monotonic and differentiable on the closure of each such component, one-

sided at the endpoints. In turn, this assures us that/' exists and equals zero at

any isolated point x0 of G. We therefore need only consider the case where C7

is perfect.

Let / be any open interval having nonempty intersection with G, and let

« > 0 be fixed. We prove that it is possible to find a closed interval [c, d] G I

such that

(l)(c,d) n G ¥= 0, and

(2) |/(y) -/Ml < 2c|y - x\ for all x in [c,d] n G andy in [c, d\.
This will establish the theorem, for we need only consider a sequence of ek

strictly decreasing to zero and an associated sequence of closed intervals

[ak,bk] such that

Q)[ak+x,bk+l]_C (ak,bk),
(4)(ak,bk) n G j- 0, and

(5) |/(y) -/Ml < 2c*|y - x\ for all x in [ak,bk] n G andy in [ak,bk].
The intersection of the sequence of sets G n [a„, bn ] will be nonempty, and

at any x0 in this intersection /' exists and equals zero.

Since f is a Baire class 1 function and G is a perfect set, the function /'

has a point of continuity relative to G in / n G. Since [x ■ f'(x) = 0} is

dense in G, /' = 0 at any such point of continuity. Hence for the c given

above we may find a closed subinterval of /, Ix = [cx, dx ], whose endpoints are

bilateral limit points of G, such that |/' Ml < e f°r an xia Ix n G. For this

Ix and c > 0 we define B(x) and Hn as in the lemma. From Definition 1 and

thejact that |/;pM| < c for all x in /, n G, it follows that U~=1(F„ n G)

= G n Ix. By the Baire category theorem there is an TV and an interval (c, d)

with c, < c < d < dx such that 0 ¥= (c,d) D G C HN n C7. Further, we

may choose (c, J) so that 0 < d - c < 1/7V and c and d are bilateral limit

points of G. Then by the lemma we have:

(6) If x andy belong to [c,d]_n G, then |/M - f(y)\ < c|y - x|.
(7) If x belongs to [c, d] n G and / is a subinterval of [c, (/] containing x,

then w(P(x) f) J)> \m(J).
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Let (a, b) E [c, d] be any component interval of the complement of G. The

function / is strictly monotone on [a, b], and it will cause no loss of generality

to suppose that it is strictly increasing. By (6), fib) - /(a) < db - a). Hence,

if for some y0 in (a, b) there is a y > 0 for which

/G\>) -/(«)> 2(1 +yHy0-a),

we must have that 2(1 + y)iy0 -a) + a = z0<b and/(j>) - /(a) > eiy - a) for

all y in [y0, zn].   However, this implies that m(7i(af) n [a, z0]) < y0 - a <

Vimi\a, z0]), contradicting (7).   This contradiction proves that fiy) - fia) <

2e(y - a) for all y in [a, b].   In the same fashion we can prove that, for ally in

[a, b], f(b)-f(y) < 2e(b-y).
We are now ready to show that [c, d] satisfies (2). It is clear that [c, d]

satisfies (1). Let x belong to [c,d] n G and y to [c, d]. If y also belongs to G

then \fiy) - /(x)| < e|_y - jc|. If y does not belong to G, there is a component

interval of the complement, (a, b) E [c, d], to which y belongs. Then, assuming

without loss of generality that x < a < y, weliave:

\f(x)-f(a)\ < e|x-a| =eia-x),

and

l/OO-/(«)! <2t\y-a\ =2eiy-a),

so |/(x) — fiy)\ < 2c|x — y\. This proves that (2) is satisfied and, as was

mentioned after (2), is enough to establish the theorem.

Corollary 1. Let f ■ [0,1] —> 7? have an approximate derivative f . Let

E = [x ■ f exists at x). Then f has the Darboux property on E.

Proof. This is obvious since /'   has the Darboux property.

Corollary 2. Let f ■ [0,1] —» 7? have an approximate derivative /' . Then

there is a point Xq in (0, 1) at which f is differentiable such that /(l) — /(0)

= f'(x0).

Proof. In [1] it is shown that there is an xx in (0, 1) such that/(l) -/(0)

= /;p(x,). Hence {x =/;p(x) = /(l) -/(0)} # 0.
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