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ON THE BEHAVIOR OF MEROMORPHIC
FUNCTIONS AT THE IDEAL BOUNDARY OF A

RIEMANN SURFACE

J. L. SCHIFF

Abstract. In a former work the author established an analog of a classical

theorem of Painleve in the context of an arbitrary resolutive compactification

of a Riemann surface. In the same setting, a refinement of the argument used

in the above yields an elementary proof of a theorem of Riesz-Luzin-

Privaloff type: If a meromorphic function / tends to zero at each point of a

subset E of the ideal boundary and E has positive harmonic measure, then

/ = 0 on R. The well-known inclusion relations UHB C BMB: and £/„„-

C BMD*> are tnen established from the point of view of the resolutivity of the

Wiener and Royden compactification respectively.

1. Introduction. The boundary behavior of analytic and meromorphic

functions has been a subject of investigation by mathematicians for more than

three-quarters of a century. Early classical developments were due to Painleve,

Fatou, F. and M. Riesz, Luzin-Privaloff, Plessner, and Nevanlinna, with the

theory being subsequently developed by numerous other authors. The unit

disk, \z\ < 1, has been the domain of consideration in most of these works.

The ideal boundary behavior of a meromorphic function on a Riemann

surface, which is the subject of this note, has been studied by Constantinescu

and Cornea [1], and Sario and Nakai [4], amongst others. In the next section,

we give a proof of a theorem of Riesz-Luzin-Privaloff type for an arbitrary

resolutive compactification of a Riemann surface. The method of proof is both

elemental in nature and fundamentally different from those given in the two

aforementioned works. The Theorem is then used to establish a single direct

line of proof of the well-known inclusion relations UHB E 6MB*, and UHD-

c eMD*.

2. Preliminaries. Let 7?* be a resolutive compactification of a Riemann

surface R, and set A = R* — R. The harmonic measure on A we denote by

«* = w. We quote the following result [2, Hilfssatz 8.8] as it is instrumental

to our proof of the Main Theorem.

Lemma . Let R* be a resolutive compactification and G an open subset of R.

If s is a positive superharmonic function on G, then the set

(1) A=<ZeA-R-G-   lim   siz) = co\
I Rsz^t J

has harmonic measure zero.
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3. Main results. We present here an elementary proof of a theorem of

Riesz-Luzin-Privaloff type (cf. Constantinescu and Cornea [1], Sario and

Nakai [4], Schiff [5]).

Theorem. Let R* be a resolutive compactification of a Riemann surface R, and

fa meromorphic function on R such that lim^3z_>>-/(z) = 0,for all f G P C A.

// P has positive harmonic measure, then f = 0 on R.

Proof. Suppose/ ^ 0 on R and let R' = R — /~'(cc). Then R' is open in

R, and the function ^ = -log|/| is superharmonic on R'. Hence the set

G = [z G R' ■■ s(z) > 0} is an open subset of R', and a fortiori G is open in

R. The hypotheses of the Lemma are now satisfied, so that cc(A) = 0, where

A is defined in (1). For any f G P C A, if f £ A, then limR3z_>^(z) = oo

implies f G R - G. Hence there exists a net {za) C R — G such that za —> f.

However, s(za) < 0 (even if za G/~'(oo)), which violates the fact that

\\mZa^fs(za) = oo. It follows that EGA and w(P) = 0, contradicting w(P)

> o". We conclude that/ = 0 on R.

From the proof of the Theorem we obtain the following result:

Corollary 1. If there exists a superharmonic function s on R such that

s —» oo at each point of E C A, then to(P) = 0.

Whether or not the converse of this result is valid is an open question,

however, it is well known to be false if we require j to be positive.

In passing, we remark that if p G A with co(/>) > 0, then it follows from the

Theorem that any meromorphic function f on R with a continuous extension

top satisfiesf(p) =£ ±oo.

Let Ux denote the class of Riemann surfaces which carry at least one X-

minimal function for X = HB, HD . Here, HB represents the class of

bounded harmonic functions, and HD the class of limits of nonincreasing

sequences of positive Dirichlet-finite harmonic functions on R which converge

uniformly on compact subsets of R. Moreover, denote by 6X the null classes

of Riemann surfaces for X = MB*, MD*, where MB* is the class of

Lindelofian meromorphic functions, and MD* the class of meromorphic

functions with finite spherical Dirichlet integral (see Sario and Nakai [4] for a

comprehensive account of these classes).

Corollary 2(Constantinescu and Cornea [1], Kuramochi [3]). UHB

C 6MB..

Proof. If R G UHB, it is known that the Wiener harmonic boundary

contains a point/? of positive harmonic measure (cf. e.g. [4]). Since the Wiener

compactification RN is resolutive, and every / G MB*(R) has a continuous

extension to RN, the meromorphic function/-/(/j) vanishes at p. It follows

from the Theorem that / = constant, and R G &MB*.

Corollary 3 (cf.Sario-Nakai [4]). [7     ~ c 0

Proof. If R G UHD~, then the Royden harmonic boundary contains a

point/? of positive harmonic measure. Since the Royden compactification RM
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is resolutive and every/ e MD*(R) has a continuous extension to RM, the

meromorphic function / - f(p) vanishes continuously at p. As above, / =

constant, and 7? G &MD*.

References

1. C. Constantinescu and A. Cornea, Uber den idealen Rand und einige seiner Anwendungen bei

der Klassifikation der Riemannschen Flachen, Nagoya Math. J. 13 (1958), 169—233, MR 20 #3273.
2.   -,  Ideale Rander Riemannscher Flachen,  Ergebnisse der  Mathematik  und  ihrer

Grenzgebiete, N. F., Band 32, Springer-Verlag, Berlin, 1963. MR 28 #3151.

3. Z. Kuramochi, On the ideal boundaries of abstract Riemann surfaces, Osaka Math. J. 10

(1958), 83—102. MR 20 #3272.
4. L. Sario and M. Nakai, Classification theory of Riemann surfaces, Die Grundlehren der math.

Wissenschaften, Band 164, Springer-Verlag, New York and Berlin, 1970. MR41#8660.

5. J. L. Schiff, Harmonic null sets and the Painleve theorem, Proc. Amer. Math. Soc. 43 (1974),

171—172.

Department of Mathematics, University of Auckland, Auckland, New Zealand

Current address: Department of Mathematics, University of California, Los Angeles, California

90024


