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HARMONIC ANALYSIS OF HARMONIC

FUNCTIONS IN THE PLANE

L. A. RUBEL

Abstract. A continuous function on the complex plane is harmonic if and

only if the span of its compositions with entire functions is not dense in the

space of continuous functions in the topology of uniform convergence on

compact sets.

Let C be the complex plane and let E be the space of all entire functions.

We remark that these functions <p (and their conjugates) are precisely those

functions for which/ ° q> is harmonic whenever/is. Let C(C) be the space of

all complex-valued continuous functions on C in the topology of uniform

convergence on compact sets. The next definition is motivated by the theory

of mean-periodic functions (see [2]).

Definition. A variety is a closed linear subspace V of C(C) that is invariant

under composition with all entire functions.

This means that if / G V and <p G E, then / ° tp G V. The problems of

spectral analysis and spectral synthesis are completely resolved by the

following result.

The six-varieties theorem. There are exactly six varieties:

1.(0},
2. C ithe constant functions),

3.E,
4. E ithe conjugates of entire functions),

5. 77 (a/7 harmonic functions),

6. C(C).

Corollary 1. Iff E C(C) is not harmonic, then the span of its compositions

with all entire functions is dense in C(C).

This corollary may be regarded as an approximation theorem. An analogue,

for the operator d2/dxdy instead of the Laplacian, was proved in [1].

Corollary 2. If f is a nonconstant entire function, then the span of its

compositions with all entire functions is dense in E.

In point of fact, the theorem amounts to little more than these two

corollaries, so we just give their proofs, from which a proof of the theorem

may be easily devised.
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Proof of Corollary 1. We first suppose that/ G C2(C), i.e. that / has

continuous second partial derivatives. Now if the span of the compositions of

/ with entire functions is not dense in C(C), then there exists a Borel measure

ju of compact support such that

(1) ff(cp(z))dp:(z) = 0    V<p G P.

Now for any w G C, we also have

A(w) = ff(cp(z))dn(z - w) = 0   V<p G P,

so that on integrating A(w)dv(w), where v is absolutely continuous with respect

to planar Lebesgue measure, we get ff(cp(z))d(ix * v)(z) = 0. So without loss

of generality, we may suppose that /t in (1) is absolutely continuous. We

rewrite (1) as f/(2 ikzk)dlt{z) = 0 lOT every everywhere convergent power

series. Now comes the main idea. Taking d2/damdan, we get

//„(2 akzk)zmz"dp.(z) = 0,

so that for all polynomials   P(z,z) we have

ffzz(^akzk)p(z,z)dij.(z)=0.

By the Stone-Weierstrass theorem, we conclude that for each continuous

function g,

(2) jJzM*))g{z)dlk) = 0   V<p G P.

But then (2) holds for any bounded measurable function g on the support of

jit, and we conclude that/zZ(<p(z)) = 0 a.e. p.

Since fi is absolutely continuous, the support of jti has a point of density z0.

Then fzz(cp(z)) has a zero in each neighborhood of z0 so that /zl(<p(z0)) = 0

and consequently fzl = 0. But 4fzz is the Laplacian of/and thus/is harmonic.

For the general case where/ £ C2(C), we convolve/with an approximate

identity that is twice continuously differentiable. This argument is standard,

and we omit the details.

Proof of Corollary 2. In a similar circle of ideas, we suppose f / ° cpdfi

= 0 for all cp G E and we must prove that f gd\i = 0 for all g G E. Consider

ff(aeXg^')d(i(z) = 0 where g G E is arbitrary. Take d/dX\x=0 to get

af'(a) f g(z)dji(z) = 0, and the conclusion follows since /is not constant.

Remarks. The analogue of Corollary 1 is easily verified for a disc. It might

be true for transitive regions G, that is, regions for which, for every z0, w0

G G, there exists an analytic function cp: G -» G such that cp(z0) = w0 and

cp'(zQ) ̂  0. But the analogue is false for G = C\{-1,1}, for on applying

Picard's Great Theorem, we see that there are too few analytic functions

cp: G —» G. Similarly, the analogue of our result for other dimensions than

n = 2 fails because there are too few maps that preserve harmonicity.
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